

Simplification with Parallelism

Arthur van Goethem a, *, Wouter Meulemans a, Andreas Reimer a, Bettina Speckmann a

a TU Eindhoven, a.i.v.goethem@tue.nl, w.meulemans@tue.nl, a.w.reimer@tue.nl, b.speckmann@tue.nl
* Corresponding author

Keywords: Generalization, simplification, algorithms

Abstract:

Map generalization requires various operators, such as selection, simplification and exaggeration to work together
suitably. Algorithmically, many of these operators have been studied, with simplification and (label) selection being
particularly fruitful areas. The interdependence between operators is complex, and results in highly complex
algorithmic problems. While interdependence of operators is a well-known cause for said complexity, the pattern-
generating interdependence of objects in a single operation is equally important: the simplification of geometric
features should consider how other features of the same class are simplified. Patterns within the same object class are a
key ingredient in cartographic communication: most prominently, isolines depend on visually interacting with each
other in order to work at all (Imhof, 1965). Many other meso-structures such as settlement types or thematic elements
like migration patterns have only visual interaction of individual objects as a signifier. Geometric similarity can come in
many guises from visually “rhyming” via using similar curvatures and angles to direct repetition (Roberts, 2012). One
approach to reach some of these effects are complex agent-based models. We explore if it is possible to already
incorporate similarity constraints on the operator level, i.e., a single geometric algorithm. We begin with maintaining
the parallelism across multiple objects that is present in the geometry. For example, alleys between buildings or height
isolines cause different geometric objects to locally resemble or complement each other. Such local parallelism
relations between objects should be preserved during generalization. Our argument complements the case made by
Reimer and Meulemans (2011), who argue for parallelism as a driving factor in computing schematic representations
for a single object, and the considerations by Haunert (2011), who presents methods for detecting symmetries in
buildings for the purpose of simplification.

We present two simplification algorithms to promote parallelism by combining techniques from the Imai-Iri
simplification algorithm (Imai & Iri, 1988) with dynamic programming. The first algorithm simplifies two curves
concurrently, computing an optimal simplification considering parallelism between the two lines. The second algorithm
iteratively simplifies one curve at a time and can easily be applied to more than two isolines, making it more directly
applicable for larger datasets. Both approaches can relatively easily be modified to use other line simplification
algorithms. We choose to stay with Imai-Iri, however, due to its well-understood mathematical attributes which allows
us to stay as close as possible to provable results in this initial exploration of the topic.

Imai-Iri. Given a polyline 𝑃𝑃, the simplification algorithm by Imai and Iri (1988) determines for each pair of vertices
whether the polyline between the vertices can be shortcut. The polyline can be shortcut between two vertices 𝑣𝑣 and 𝑤𝑤 if
the straight segment from 𝑣𝑣 to 𝑤𝑤 is at most a distance 𝜀𝜀 away from the original polyline between vertex 𝑣𝑣 and 𝑤𝑤. All
the legal shortcuts together form a graph on the vertices of the polyline, called the shortcut graph. The algorithm then
computes the shortest sequence of shortcuts that together cover the complete polyline by computing a shortest path in
the shortcut graph. This method takes 𝑂𝑂(𝑛𝑛2) time (Chan & Chin, 1996).

Defining parallelism. We base our definition of parallelism on the work of Reimer and Meulemans (2011). They
define a parallelism score between two line segments, based on their angle and how well the “face each other”. Let 𝛼𝛼
denote the angle between the two line segments, and 𝐿𝐿 their bisector – that is, a line with angle 𝛼𝛼/2 to both segments.
We project both line segments onto 𝐿𝐿 and intersect the corresponding intervals along 𝐿𝐿 to obtain a value 𝐹𝐹 . The
parallelism score between these segments is then computed as 𝑒𝑒−200𝛼𝛼2 ⋅ 𝐹𝐹. The algorithms described below are agnostic
to the exact parallelism measure used. Hence, they can easily be adapted to other parallelism measures.

Concurrent simplification with parallelism. We are given two polylines 𝑃𝑃 and 𝑄𝑄 with 𝑚𝑚 respectively 𝑛𝑛 vertices, a
parameter 𝐾𝐾 bounding the total complexity of the output, and an error-margin 𝜀𝜀. The two polylines should be simplified
simultaneously such that the complexity (number of edges) of the polylines together is at most 𝐾𝐾, and the introduced
error is at most 𝜀𝜀, while promoting parallelism between the two polylines. Given 𝜀𝜀 we compute the shortcut graphs 𝐺𝐺𝑃𝑃
and 𝐺𝐺𝑄𝑄 for 𝑃𝑃 respectively 𝑄𝑄. We then simultaneously find two paths through 𝐺𝐺𝑃𝑃 and 𝐺𝐺𝑄𝑄 that are maximally parallel
using the following two actions. First, one of the paths may be extended by a single shortcut. By definition such an
extension does not improve the parallelism of the final result. Second, both paths may simultaneously be extended by a
single shortcut each, improving the parallelism of the final result by the relative parallelism of the added two shortcuts.
To find the combination of up to 𝐾𝐾 shortcuts that maximizes the total parallelism we use dynamic programming. Define
a dynamic-programming table where each entry 𝐷𝐷[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] represents the simplification of 𝑃𝑃 up to vertex 𝑖𝑖 and the

simplification of 𝑄𝑄 up to vertex 𝑗𝑗, such that they together use exactly 𝑘𝑘 edges and such that they maximize the total
parallelism. The final answer is thus max

1≤𝑘𝑘≤ 𝐾𝐾
𝐷𝐷[𝑚𝑚,𝑛𝑛, 𝑘𝑘], where ties are broken in favor of results with fewer edges.

We obtain the following recursive definition:

𝐷𝐷[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, 𝑖𝑖 = 𝑗𝑗 = 1, 𝑘𝑘 = 0

max

⎩
⎪
⎨

⎪
⎧ max

(𝑎𝑎,𝑖𝑖)∈𝐺𝐺𝑃𝑃
𝐷𝐷[𝑎𝑎, 𝑗𝑗, 𝑘𝑘 − 1]

max
(𝑏𝑏,𝑗𝑗)∈𝐺𝐺𝑄𝑄

𝐷𝐷[𝑖𝑖, 𝑏𝑏, 𝑘𝑘 − 1]

max
(𝑎𝑎,𝑖𝑖)∈𝐺𝐺𝑃𝑃,(𝑏𝑏,𝑗𝑗)∈𝐺𝐺𝑄𝑄

𝐷𝐷[𝑎𝑎, 𝑏𝑏, 𝑘𝑘 − 2] + 𝑝𝑝(𝑎𝑎, 𝑖𝑖, 𝑏𝑏, 𝑗𝑗)
⎭
⎪
⎬

⎪
⎫

, 𝑘𝑘 ≥ 1

−∞, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

Here, we assume that the maximum over an empty set is −∞; and 𝑝𝑝(𝑎𝑎, 𝑖𝑖, 𝑏𝑏, 𝑗𝑗) represents the parallelism score between
the shortcut from 𝑎𝑎 to 𝑖𝑖 in 𝑃𝑃 and the shortcut from 𝑏𝑏 to 𝑗𝑗 in 𝑄𝑄. The table has 𝑂𝑂(𝑛𝑛2𝐾𝐾) cells and computing one cell takes
𝑂𝑂(𝑛𝑛2) time due to the third term of the second case. Hence, the DP runs in 𝑂𝑂(𝑛𝑛4𝐾𝐾) time, which dominates the
quadratic time to initialize the shortcut graphs.

Our dynamic program (DP) optimizes what we refer to as “ordered parallelism”: parallelism between two curves 𝑃𝑃′ and
𝑄𝑄′ is defined by the sum of the parallelism scores of a sequence of pairs of edges (the shortcuts taken simultaneously).
That is, parallelism is measured only for shortcuts occurring in the same order along both polylines. This is inherent in
the DP as a result of the necessary “optimal” substructure. However, intuitively, such an order need not exist in all
cases, as shown in Figure 1.

Iterative simplification with parallelism. The above DP has considerable running time, operates on only two
polylines simultaneously, and is limited to ordered parallelism. To overcome these limitations, we propose an iterative
alternative: we simplify the lines one by one, using earlier simplifications as context to determine parallelism. By
repeatedly simplifying the lines in this manner, we converge on a representation with high parallelism.

The input to this algorithm is 𝑚𝑚 polylines 𝑃𝑃1, … ,𝑃𝑃𝑚𝑚, with 𝑛𝑛 vertices each (we assume for simplicity that all curves have
the same complexity). Moreover, we assume we are given as input an 𝜀𝜀 > 0 that captures the error margin, a 𝐾𝐾 ≤ 𝑛𝑛 that
represents the maximal number of edges per simplified polyline (rather than over all lines), and an 𝑋𝑋 > 0 indicating the
number of iterations. We assume that the polylines are provided in “sorted order”. That is, any two polylines 𝑃𝑃𝑖𝑖 and
𝑃𝑃𝑖𝑖+1 are also adjacent on the map and parallelism between these polylines should be maintained. We do not directly
consider parallelism between polylines that are not adjacent in the order, even if the isolines are adjacent on the map.

First, we build the shortcut graph 𝐺𝐺𝑖𝑖 and compute a simplification 𝑆𝑆𝑖𝑖 for each polyline 𝑃𝑃𝑖𝑖 in isolation, using Imai and
Iri’s algorithm. If the complexity exceeds 𝐾𝐾, no simplification with at most 𝐾𝐾 edges exists within the error threshold.

After this initialization, we repeat the following procedure 𝑋𝑋 times: for each polyline 𝑃𝑃𝑖𝑖 , we consider each edge (𝑢𝑢, 𝑣𝑣)
in 𝐺𝐺𝑖𝑖 and determine its parallelism score, denoted by 𝑝𝑝(𝑢𝑢,𝑣𝑣), as the maximum over its parallelism score to each of the
edges in 𝑆𝑆𝑖𝑖−1 and 𝑆𝑆𝑖𝑖+1. We then update 𝑆𝑆𝑖𝑖 to optimize for parallelism, using a DP for a single polyline akin to the one
above. We define a DP table 𝑇𝑇[𝑣𝑣, 𝑘𝑘], that represents the highest parallelism score for a simplification of 𝑃𝑃𝑖𝑖 up to vertex
𝑣𝑣 using exactly 𝑘𝑘 edges. The answer we seek is thus max

1≤𝑘𝑘≤ 𝐾𝐾
𝑇𝑇[𝑛𝑛, 𝑘𝑘], breaking ties in favor of results with fewer edges.

Fig. 1: two curves with 4 edges. Though edge-pairs
(b,3) and (2,c) are parallel, these pairs cannot occur
in the same order along the curves; the dynamic
programming method thus accounts for at most one of
these pairs in terms of parallelism score.

Fig. 2: two curves with 53 (lower) and 87
(upper) edges in black; in red the result of
the concurrent method, using 𝐾𝐾 = 40 and 𝜀𝜀
as indicated by the radius of the circle.

 We obtain the following recursion:

𝑇𝑇[𝑣𝑣, 𝑘𝑘] = �
0, 𝑣𝑣 = 1, 𝑘𝑘 = 0

−∞, 𝑣𝑣 = 1, 𝑘𝑘 > 0 𝑜𝑜𝑒𝑒 𝑣𝑣 > 1, 𝑘𝑘 = 0
max

(𝑢𝑢,𝑣𝑣)∈𝐺𝐺𝑖𝑖
𝑇𝑇[𝑢𝑢,𝑘𝑘 − 1] + 𝑝𝑝(𝑢𝑢, 𝑣𝑣) , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

Initialization using the Imai-Iri algorithm takes 𝑂𝑂(𝑚𝑚 𝑛𝑛2) time. Each subsequent simplification costs 𝑂𝑂(𝑛𝑛2 𝐾𝐾) time to
update the weights, followed by 𝑂𝑂(𝑛𝑛2 𝐾𝐾) time to compute the new simplification. One full iteration thus takes
𝑂𝑂(𝑚𝑚 𝑛𝑛2 𝐾𝐾) time and the full algorithm thus amounts to 𝑂𝑂(𝑋𝑋 𝑚𝑚 𝑛𝑛2 𝐾𝐾) time.

Discussion. We have described two approaches for simplification of polylines that incorporate parallelism. The first is
slower but computes the “optimal” result for two polylines, the other a faster iterative approach that can handle multiple
polylines simultaneously. Example results of our prototype implementations are shown in Figs. 2 and 3. We aim to
investigate which of these approaches is more suitable by evaluating their performance in terms of running time, output
complexity, and parallelism. For the iterative approach specifically, we aim to investigate how quickly this algorithm
converges in practice.

There are still several other considerations that may be considered surrounding parallel simplification. First, there are
some improvements to the described algorithms that would be desirable. The first algorithm can consider only ordered-
parallelism measurements. It would be preferable if the approach could be extended to also take parallelism into
account between shortcuts that do not occur ordered along both polylines. This appears to be hard to achieve without
further increasing the runtime though. The second algorithm takes as input isolines in “sorted order”. However, there
are simple geographic features, like saddle points, that do not match such a linear ordering. An extension to these non-
linear orderings appears a simple extension to the described algorithm.

Second, the algorithms as described consider parallelism between the complete isolines. It may be desirable to only
consider parallelism between parts of the polylines. As an example, the extrusion in the outer isoline as displayed in
Figs. 2 and 3 may preferably not be considered for parallelism with respect to the inner polyline. We are considering
different techniques that automatically detect a mapping between two adjacent isolines to directly identify such
extrusions and to exclude them from consideration regarding parallelism.

Third, both described approaches are vertex-restricted: the output is always a (not necessarily consecutive) subsequence
of the input vertices. However, it may be desirable to be more flexible and to allow the introduction of new vertices for
the simplification. Particularly, as a consequence of being vertex-restricted we may miss opportunities for parallelism
that a smoothing operation could yield. In future work, we will investigate options for a smoothing operator or
alternative approaches to introduce new vertices in the result.

Fig. 3: results of the iterative method using zero to three iterations are shown in red, for the
same input as Fig 3. The same 𝜀𝜀 is used, and 𝐾𝐾 is set to 20 to mimic 𝐾𝐾=40 as used by the
concurrent method.

References

W. S. Chan and F. Chin (1996). Approximation of polygonal curves with minimum number of line segments or
minimum error. International Journal of Computational Geometry & Applications, 6(1): 59—77.

J.-H. Haunert (2011). Detecting symmetries in building footprints by string matching. Advancing Geoinformation
Science for a Changing World, pages 319—336.

H. Imai and M. Iri (1988). Polygonal approximations of a curve - formulations and algorithms. In Godfried T.
Toussaint, editor, Computational Morphology: A Computational Geometric Approach to the Analysis of Form.

E. Imhof (1965). Kartographische Geländedarstellung, Berlin.

A. Reimer and W. Meulemans (2011). Parallelity in chorematic territorial outlines. Proceedings of the 14th Workshop
on Generalisation and Multiple Representation.

M. Roberts (2012). Underground Maps unravelled. Essex.

