
 

Simplification with Parallelism 

Arthur van Goethem a, *, Wouter Meulemans a, Andreas Reimer a, Bettina Speckmann a 

 
a TU Eindhoven, a.i.v.goethem@tue.nl, w.meulemans@tue.nl, a.w.reimer@tue.nl, b.speckmann@tue.nl 
* Corresponding author 
 
Keywords: Generalization, simplification, algorithms 
 

Abstract: 

Map generalization requires various operators, such as selection, simplification and exaggeration to work together 
suitably. Algorithmically, many of these operators have been studied, with simplification and (label) selection being 
particularly fruitful areas. The interdependence between operators is complex, and results in highly complex 
algorithmic problems. While interdependence of operators is a well-known cause for said complexity, the pattern-
generating interdependence of objects in a single operation is equally important: the simplification of geometric 
features should consider how other features of the same class are simplified. Patterns within the same object class are a 
key ingredient in cartographic communication: most prominently, isolines depend on visually interacting with each 
other in order to work at all (Imhof, 1965). Many other meso-structures such as settlement types or thematic elements 
like migration patterns have only visual interaction of individual objects as a signifier. Geometric similarity can come in 
many guises from visually “rhyming” via using similar curvatures and angles to direct repetition (Roberts, 2012). One 
approach to reach some of these effects are complex agent-based models. We explore if it is possible to already 
incorporate similarity constraints on the operator level, i.e., a single geometric algorithm.  We begin with maintaining 
the parallelism across multiple objects that is present in the geometry. For example, alleys between buildings or height 
isolines cause different geometric objects to locally resemble or complement each other. Such local parallelism 
relations between objects should be preserved during generalization. Our argument complements the case made by 
Reimer and Meulemans (2011), who argue for parallelism as a driving factor in computing schematic representations 
for a single object, and the considerations by Haunert (2011), who presents methods for detecting symmetries in 
buildings for the purpose of simplification. 

We present two simplification algorithms to promote parallelism by combining techniques from the Imai-Iri 
simplification algorithm (Imai & Iri, 1988) with dynamic programming. The first algorithm simplifies two curves 
concurrently, computing an optimal simplification considering parallelism between the two lines. The second algorithm 
iteratively simplifies one curve at a time and can easily be applied to more than two isolines, making it more directly 
applicable for larger datasets. Both approaches can relatively easily be modified to use other line simplification 
algorithms. We choose to stay with Imai-Iri, however, due to its well-understood mathematical attributes which allows 
us to stay as close as possible to provable results in this initial exploration of the topic.  

Imai-Iri. Given a polyline 𝑃𝑃, the simplification algorithm by Imai and Iri (1988) determines for each pair of vertices 
whether the polyline between the vertices can be shortcut. The polyline can be shortcut between two vertices 𝑣𝑣 and 𝑤𝑤 if 
the straight segment from 𝑣𝑣 to 𝑤𝑤 is at most a distance 𝜀𝜀 away from the original polyline between vertex 𝑣𝑣 and 𝑤𝑤. All 
the legal shortcuts together form a graph on the vertices of the polyline, called the shortcut graph. The algorithm then 
computes the shortest sequence of shortcuts that together cover the complete polyline by computing a shortest path in 
the shortcut graph. This method takes 𝑂𝑂(𝑛𝑛2) time (Chan & Chin, 1996). 

Defining parallelism. We base our definition of parallelism on the work of Reimer and Meulemans (2011). They 
define a parallelism score between two line segments, based on their angle and how well the “face each other”. Let 𝛼𝛼 
denote the angle between the two line segments, and 𝐿𝐿 their bisector – that is, a line with angle 𝛼𝛼/2 to both segments. 
We project both line segments onto 𝐿𝐿  and intersect the corresponding intervals along 𝐿𝐿  to obtain a value 𝐹𝐹 . The 
parallelism score between these segments is then computed as 𝑒𝑒−200𝛼𝛼2 ⋅ 𝐹𝐹. The algorithms described below are agnostic 
to the exact parallelism measure used. Hence, they can easily be adapted to other parallelism measures. 

Concurrent simplification with parallelism. We are given two polylines 𝑃𝑃 and 𝑄𝑄 with 𝑚𝑚 respectively 𝑛𝑛 vertices, a 
parameter 𝐾𝐾 bounding the total complexity of the output, and an error-margin 𝜀𝜀. The two polylines should be simplified 
simultaneously such that the complexity (number of edges) of the polylines together is at most 𝐾𝐾, and the introduced 
error is at most 𝜀𝜀, while promoting parallelism between the two polylines. Given 𝜀𝜀 we compute the shortcut graphs 𝐺𝐺𝑃𝑃 
and 𝐺𝐺𝑄𝑄  for 𝑃𝑃 respectively 𝑄𝑄. We then simultaneously find two paths through 𝐺𝐺𝑃𝑃  and 𝐺𝐺𝑄𝑄  that are maximally parallel 
using the following two actions. First, one of the paths may be extended by a single shortcut. By definition such an 
extension does not improve the parallelism of the final result. Second, both paths may simultaneously be extended by a 
single shortcut each, improving the parallelism of the final result by the relative parallelism of the added two shortcuts. 
To find the combination of up to 𝐾𝐾 shortcuts that maximizes the total parallelism we use dynamic programming. Define 
a dynamic-programming table where each entry 𝐷𝐷[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] represents the simplification of 𝑃𝑃  up to vertex 𝑖𝑖  and the 



simplification of 𝑄𝑄 up to vertex 𝑗𝑗, such that they together use exactly 𝑘𝑘 edges and such that they maximize the total 
parallelism. The final answer is thus max

1≤𝑘𝑘≤ 𝐾𝐾
𝐷𝐷[𝑚𝑚,𝑛𝑛, 𝑘𝑘], where ties are broken in favor of results with fewer edges. 

We obtain the following recursive definition: 

𝐷𝐷[𝑖𝑖, 𝑗𝑗, 𝑘𝑘] =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, 𝑖𝑖 = 𝑗𝑗 = 1, 𝑘𝑘 = 0

max

⎩
⎪
⎨

⎪
⎧ max

(𝑎𝑎,𝑖𝑖)∈𝐺𝐺𝑃𝑃
𝐷𝐷[𝑎𝑎, 𝑗𝑗, 𝑘𝑘 − 1]

max
(𝑏𝑏,𝑗𝑗)∈𝐺𝐺𝑄𝑄

𝐷𝐷[𝑖𝑖, 𝑏𝑏, 𝑘𝑘 − 1]

max
(𝑎𝑎,𝑖𝑖)∈𝐺𝐺𝑃𝑃,(𝑏𝑏,𝑗𝑗)∈𝐺𝐺𝑄𝑄

𝐷𝐷[𝑎𝑎, 𝑏𝑏, 𝑘𝑘 − 2] + 𝑝𝑝(𝑎𝑎, 𝑖𝑖, 𝑏𝑏, 𝑗𝑗)
⎭
⎪
⎬

⎪
⎫

, 𝑘𝑘 ≥ 1

−∞, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

 

Here, we assume that the maximum over an empty set is −∞; and 𝑝𝑝(𝑎𝑎, 𝑖𝑖, 𝑏𝑏, 𝑗𝑗) represents the parallelism score between 
the shortcut from 𝑎𝑎 to 𝑖𝑖 in 𝑃𝑃 and the shortcut from 𝑏𝑏 to 𝑗𝑗 in 𝑄𝑄. The table has 𝑂𝑂(𝑛𝑛2𝐾𝐾) cells and computing one cell takes 
𝑂𝑂(𝑛𝑛2) time due to the third term of the second case. Hence, the DP runs in 𝑂𝑂(𝑛𝑛4𝐾𝐾)  time, which dominates the 
quadratic time to initialize the shortcut graphs. 

Our dynamic program (DP) optimizes what we refer to as “ordered parallelism”: parallelism between two curves 𝑃𝑃′ and 
𝑄𝑄′ is defined by the sum of the parallelism scores of a sequence of pairs of edges (the shortcuts taken simultaneously). 
That is, parallelism is measured only for shortcuts occurring in the same order along both polylines. This is inherent in 
the DP as a result of the necessary “optimal” substructure. However, intuitively, such an order need not exist in all 
cases, as shown in Figure 1. 

Iterative simplification with parallelism. The above DP has considerable running time, operates on only two 
polylines simultaneously, and is limited to ordered parallelism. To overcome these limitations, we propose an iterative 
alternative: we simplify the lines one by one, using earlier simplifications as context to determine parallelism. By 
repeatedly simplifying the lines in this manner, we converge on a representation with high parallelism.   

The input to this algorithm is 𝑚𝑚 polylines 𝑃𝑃1, … ,𝑃𝑃𝑚𝑚, with 𝑛𝑛 vertices each (we assume for simplicity that all curves have 
the same complexity). Moreover, we assume we are given as input an 𝜀𝜀 > 0 that captures the error margin, a 𝐾𝐾 ≤ 𝑛𝑛 that 
represents the maximal number of edges per simplified polyline (rather than over all lines), and an 𝑋𝑋 > 0 indicating the 
number of iterations. We assume that the polylines are provided in “sorted order”. That is, any two polylines 𝑃𝑃𝑖𝑖  and 
𝑃𝑃𝑖𝑖+1 are also adjacent on the map and parallelism between these polylines should be maintained. We do not directly 
consider parallelism between polylines that are not adjacent in the order, even if the isolines are adjacent on the map.  

First, we build the shortcut graph 𝐺𝐺𝑖𝑖 and compute a simplification 𝑆𝑆𝑖𝑖 for each polyline 𝑃𝑃𝑖𝑖  in isolation, using Imai and 
Iri’s algorithm. If the complexity exceeds 𝐾𝐾, no simplification with at most 𝐾𝐾 edges exists within the error threshold. 

After this initialization, we repeat the following procedure 𝑋𝑋 times: for each polyline 𝑃𝑃𝑖𝑖 , we consider each edge (𝑢𝑢, 𝑣𝑣) 
in 𝐺𝐺𝑖𝑖 and determine its parallelism score, denoted by 𝑝𝑝(𝑢𝑢,𝑣𝑣), as the maximum over its parallelism score to each of the 
edges in 𝑆𝑆𝑖𝑖−1 and 𝑆𝑆𝑖𝑖+1. We then update 𝑆𝑆𝑖𝑖 to optimize for parallelism, using a DP for a single polyline akin to the one 
above. We define a DP table 𝑇𝑇[𝑣𝑣, 𝑘𝑘], that represents the highest parallelism score for a simplification of 𝑃𝑃𝑖𝑖  up to vertex 
𝑣𝑣 using exactly 𝑘𝑘 edges. The answer we seek is thus max

1≤𝑘𝑘≤ 𝐾𝐾
𝑇𝑇[𝑛𝑛, 𝑘𝑘], breaking ties in favor of results with fewer edges. 

 

Fig. 1: two curves with 4 edges. Though edge-pairs 
(b,3) and (2,c) are parallel, these pairs cannot occur 
in the same order along the curves; the dynamic 
programming method thus accounts for at most one of 
these pairs in terms of parallelism score. 

Fig. 2: two curves with 53 (lower) and 87 
(upper) edges in black; in red the result of 
the concurrent method, using 𝐾𝐾 = 40 and 𝜀𝜀 
as indicated by the radius of the circle. 



 We obtain the following recursion: 

𝑇𝑇[𝑣𝑣, 𝑘𝑘] = �
0, 𝑣𝑣 = 1, 𝑘𝑘 = 0

−∞, 𝑣𝑣 = 1, 𝑘𝑘 > 0 𝑜𝑜𝑒𝑒 𝑣𝑣 >  1, 𝑘𝑘 = 0
max

(𝑢𝑢,𝑣𝑣)∈𝐺𝐺𝑖𝑖
𝑇𝑇[𝑢𝑢,𝑘𝑘 − 1] + 𝑝𝑝(𝑢𝑢, 𝑣𝑣) , 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑤𝑤𝑖𝑖𝑒𝑒𝑒𝑒

 

Initialization using the Imai-Iri algorithm takes 𝑂𝑂(𝑚𝑚 𝑛𝑛2) time. Each subsequent simplification costs 𝑂𝑂(𝑛𝑛2 𝐾𝐾) time to 
update the weights, followed by 𝑂𝑂(𝑛𝑛2 𝐾𝐾)  time to compute the new simplification. One full iteration thus takes 
𝑂𝑂(𝑚𝑚 𝑛𝑛2 𝐾𝐾) time and the full algorithm thus amounts to 𝑂𝑂(𝑋𝑋 𝑚𝑚 𝑛𝑛2 𝐾𝐾) time.  

Discussion. We have described two approaches for simplification of polylines that incorporate parallelism. The first is 
slower but computes the “optimal” result for two polylines, the other a faster iterative approach that can handle multiple 
polylines simultaneously. Example results of our prototype implementations are shown in Figs. 2 and 3. We aim to 
investigate which of these approaches is more suitable by evaluating their performance in terms of running time, output 
complexity, and parallelism. For the iterative approach specifically, we aim to investigate how quickly this algorithm 
converges in practice. 

There are still several other considerations that may be considered surrounding parallel simplification. First, there are 
some improvements to the described algorithms that would be desirable. The first algorithm can consider only ordered-
parallelism measurements. It would be preferable if the approach could be extended to also take parallelism into 
account between shortcuts that do not occur ordered along both polylines. This appears to be hard to achieve without 
further increasing the runtime though. The second algorithm takes as input isolines in “sorted order”. However, there 
are simple geographic features, like saddle points, that do not match such a linear ordering. An extension to these non-
linear orderings appears a simple extension to the described algorithm. 

Second, the algorithms as described consider parallelism between the complete isolines. It may be desirable to only 
consider parallelism between parts of the polylines. As an example, the extrusion in the outer isoline as displayed in 
Figs. 2 and 3 may preferably not be considered for parallelism with respect to the inner polyline. We are considering 
different techniques that automatically detect a mapping between two adjacent isolines to directly identify such 
extrusions and to exclude them from consideration regarding parallelism. 

Third, both described approaches are vertex-restricted: the output is always a (not necessarily consecutive) subsequence 
of the input vertices. However, it may be desirable to be more flexible and to allow the introduction of new vertices for 
the simplification. Particularly, as a consequence of being vertex-restricted we may miss opportunities for parallelism 
that a smoothing operation could yield. In future work, we will investigate options for a smoothing operator or 
alternative approaches to introduce new vertices in the result. 

 

Fig. 3: results of the iterative method using zero to three iterations are shown in red, for the 
same input as Fig 3. The same 𝜀𝜀 is used, and 𝐾𝐾 is set to 20 to mimic 𝐾𝐾=40 as used by the 
concurrent method. 
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