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Abstract: Land-use maps are necessary for planning at the neighbourhood and municipal level as well as at the regional 
and country level. However, each scale requires different level of detail. Generalisation is a fundamental cartographic 
procedure used in map production, which allows the transition from a larger scale to a smaller one. In this research, 
Hellenic Cadastre parcel data at reference scale 1:2500 with land-use attributes are generalized, to produce maps in 
scales 1:5K, 1:10K, 1:25K. Two different approaches star and ladder generalisation were applied. The method uses a 
cartographic rule (the minimum map element) for the selection operator and semantic and geometric (Longest Common 
Boundary and Best Neighbour) criteria for the aggregation operator. The results were evaluated by estimating the 
changes of land-uses area after generalisation. The generalisation of the cadastral land-use data was implemented 
utilizing commercial software (ArcGIS) tools within Python using the ArcPy library. 
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1. Introduction 

Regardless of the nature of spatial data, the generalisation 
objective is always the same: reduction of the 
unnecessary detail, according to map scale level and to 
map purpose, in order to better communicate the 
information to the user/map reader [ICA] (Weibel & 
Dutton, 1995). Although the different applications of 
generalisation have a common purpose, the operators / 
transformations differ depending on the data to be 
generalized and the needs of the user/ map reader. 

Before the widespread of spatial databases and GIS, the 
generalisation of a map was considered to consist of two 
stages: the generalisation of the cartographic/ 
geographical model (model-oriented generalisation) and 
the cartographic generalisation (Muller, 1995b in Cheng 
and Li, 2006). These two procedures can be applied either 
autonomously or in combination (Cheng and Li, 2006). 

Generalisation can be applied to both geometry and 
semantics of a cartographic/geographic entity. The 
method is characterized geometry-based when 
generalisation is applied according to geometric accuracy 
criteria, while if the criteria are related to the semantic 
relevance of entities, the process is characterize as theme-
based (Cheng and Li, 2006). In this research both 
geometric and semantic generalisation are investigated 
for land-use polygons generalisation. Geometry 
generalisation is implemented with appropriate operators, 

while semantic generalisation is applied based on a “land-
use classification schema (ontologies)” across scales.  

The main purpose of this research is to examine the use 
of cadastral land-use data (reference scale 1:2500) 
generalisation in the production of large scale maps (e.g. 
scales 1:5K, 1:10K, 1:25K), with the minimum user 
involvement, utilizing ArcGIS tools within Python 
(ArcPy library). The work aims to answer the following 
questions: 

 Is it possible to produce large-scale maps from 
cadastral data utilizing generalisation? 

 Can generalisation be applied to the geometric 
and the semantic features of the parcels? 

 How can the generalisation procedure be 
applied? 

 Can the same generalisation workflow be 
applied for the production of a number of 
different map in various (smaller) scales (ladder 
generalisation vs. star generalisation)? 

 Are the land-use changes produced by 
generalisation in harmony with map scale? 

The paper is organized as follows: Section 2 provides 
background material on generalisation; Section 3 
describes the proposed generalisation method, the case 
study and the results and Section 4 discusses the results 
and presents the future plans. 



2. Related Work 

Generalisation is a fundamental cartographic procedure, 
although its automation is difficult to be accomplished 
due to complexity and its holistic character (Cheng and 
Li, 2006; Monmonier, 1982 in Cebrykow, 2017). As 
early as 1988, Brassel and Weibel proposed a conceptual 
approach to holistic automatic generalisation. That 
approach was extended by McMaster and Sea in 1992, 
while Perkal in early 1958 (in Cebrykow, 2017) 
introduced a number of objective rules to the 
generalisation process trying to change its subjective 
character.  

Generalisation, and more precisely its automation, is 
crucial for NMAs (National Mapping Agencies) and 
private mapping companies in the framework of map 
production. Automation results to the minimization of 
users involvement and therefore to production cost, 
which also leads to better data management and 
compliance with other demands (Stoter et al., 2011). 
Generalisation can also facilitate the provision of open 
data to society, as it achieves cost and data volume 
reduction (Stoter et al., 2016). At the same time, it 
supports the integration of heterogeneous data from 
different sources in a GIS (van Smaalen, 2003).  

Over the last two decades, significant efforts have been 
made to conceptually approach generalisation automation 
and to design processes with the minimum user 
involvement. The differences between various 
generalisation approaches depend on: the data to be 
generalised (e.g. generalisation of a topographic or 
categorical map), the desired product (e.g. cartographic 
representation or cartographic model) and the 
implementation tools (e.g. open source software, 
commercial software, GIS tools, integrated 
programming). 

A number of researchers have focused on generalization 
of cadastral and land-use maps. Van Smaalen (2003), 
presented a generalisation workflow for a categorical map 
(e.g. maps of entities with geometry and semantics which 
indicate categories). He proposed an object-oriented 
conceptual approach whose implementation is done by 
the aggregation of adjacent geometries. Cheng and Li 
(2006) tested the effects of two different generalisation 
processes (geometry-based and theme-based) and 
proposed qualitative and quantitative measures for 
assessing the generalisation product. They generalised a 
land-use map based on the MMU (Minimum Map Unit), 
which depends on the source and target scale. Alves et al. 
(2010) suggested a workflow for the generalisation of 
cadastral topographic map. Haunert and Wolf (2010) 
proposed a mixed integer-programming method for areal 
features generalisation, where the minimum area is 
selected and merged with the most similar neighbor. Park 
and Yu (2011) developed a generalisation model for 

spatial cadastral data. Initially, the road network is 
isolated and generalized, then the land-use polygons are 
generalized through aggregation based on rules. Dimov et 
al. (2014) proposed an automatic generalization process 
for land-use data (vector and raster) of a non-urban area, 
using programming tools and GIS. The purpose of that 
research was the production of a generalised map (scale 
1:25K) from 1:1K data. In the proposed procedure 
algorithms for both vector and raster data were applied, 
such as the Euclidean distance and the Delaunay 
triangulation. Geometry, semantics and topology rules 
were utilized and the change of geometric and thematic 
properties of polygons were evaluated. Yadav (2015) 
used raster data to create land-use maps at scales 1:10K, 
1:25K and 1:50K. A generalisation process is used for the 
creation of the maps at different scale, which is based on 
a polygon similarity model. Hidayat and Susetyo (2019) 
examined the generalisation of buildings polygons (1:5K) 
in order to map them in smaller scales (1:25K, 1:250K). 

Spatial data generalisation is a fundamental 
transformation that is implemented with a wide range of 
operators (Cheng and Li, 2006). The choice of operators 
depends on the type of generalisation (model-oriented or 
cartographic), on the feature type to which it is applied 
(geometry or semantics), on the nature of the data (e.g. 
dimensions), on the purpose of generalisation (at what 
level of detail/scale). The aggregation operator is mostly 
used in polygon maps generalisation (van Smaalen, 2003; 
Cheng and Li, 2006; Haunert and Wolff, 2010; Park and 
Yu, 2011; Dimov al., 2014; Yadav, 2015; Peng et al., 
2017; Susetyo and Hidayat, 2019; Li et al,. 2020; Shen et 
al., 2020). Moreover, selection (of the smallest of the 
elements to be generalized/aggregated) is a common 
operator (van Smaalen, 2013; Dimov et al., 2014; 
Susetyo and Hidayat, 2019; Shen et al., 2019). Stoter et 
al. (2013) used specific operators for map generalisation 
(eg displacement, simplification), while for model 
generalisation data-driven operators according to 
constraints are used according to constraints. Regarding 
to semantic feature generalisation, the most common 
technique is the use of a classification schema and the 
reclassification operator (Yadav, 2015; Peng et al., 2017). 

The complex and subjective character of generalisation 
impedes its optimization, however there are a few 
objective measures to describe the quality of 
generalisation products (Haunert and Wolf, 2010). Van 
Smaalen (2003) evaluated both visually and 
quantitatively his method results. A common way to 
validate generalisation performance is the user/expert 
who evaluates product data consistency and the 
preservation of initial data basic features (in Stoter et al., 
2013). Cheng and Li (2006) provided a set of qualitative 
and quantitative objective measures for the evaluation of 
the product of generalisation, in order to compare two 
different algorithms (geometry-based and a theme-based). 



Frank and Ester (2006) proposed a set of similarity 
measures through which changes of local entities are 
calculated. Stoter et al. (2009) proposed three evaluation 
procedures, using commercial software, which include: 
cartographers-expert evaluation, automated constraint-
based evaluation and visual quality comparison. Alves et 
al. (2010) measured generalisation product quality with 
rules about change in geometric features and accuracy, 
the preservation of patterns and quantity information. 
Dimov et al. (2014) used the product’s compactness 
(through measuring area change for each class) and 
evaluated semantic consistency by measuring the 
thematic change from initial data (through raster algebra 
by subtracting raster product super-class from initial 
raster super-classes). Haunert and Wolf (2010) suggested 
optimization approaches through mathematical 
programming. In their research, they modelled the 
generalisation process with graphs, as an optimization 
problem. 

In literature, there have been others studies related to 
generalisation of polygons with semantics features. Van 
Oosterom (2005) introduced the first data structure for 
multi-scale area data. Peng et al. (2017) implemented a 
similar to generalisation process, as they proposed an 
optimal workflow of polygon aggregation sequences in 
order to transform a given large scale land cover map 
(source map) to a given smaller scale land-cover map 
(target map). The purpose of this algorithm is the creation 
of maps with scales between the large (start) and the 
smaller one (goal). 

From the above analysis, it is obvious that land-use 
generalisation is a crucial topic in generalisation for map 
production. The use of specific operators such as 
aggregation and selection dominates. Additionally, the 
evaluation of the generalisation results is highly 
recommended. These findings will guide this study as 
well.  

3. Cadastral data generalization for the 
production of large scale maps 

In the present research, it was investigated whether 
cadastral spatial data, that collect land-use information at 
parcel level, can be used for the production of large scale 
maps. 

3.1 Data 

Hellenic Cadastre provides a spatial database of reference 
scale 1:2500 that uses parcel as level of detail (Figure 1). 
The spatial database consists of thematic polygons. Each 
entity represents a parcel and records the land-use value. 
The main topological constraints of such a spatial 
database is the absence of gaps and overlaps.  

The study area is Larissa, a city in central Greece. The 
basic criterion for selecting this city is the existence of an 
urban and a non-urban area. In the urban sub-area the 

land-uses show high diversity (even in neighbouring 
parcels) and the parcels are quite small, whereas in the 
non-urban sub-area the parcels are larger and the land-
uses show little variation. The differences between the 
two sub-areas play a decisive role in the outcome of the 
proposed generalisation process. For example, the larger 
the area of a polygon, the probability to need 
generalization gets smaller. In contrast, the smaller the 
polygon in a neighbourhood with polygons with many 
different land-uses, the greater are the changes in the 
semantics after generalisation. Moreover, the parcels in 
the urban sub-area are organized in building blocks 
separated by the road network, while in the non-urban 
sub-area the road network is sparse. Finally, in Larissa 
there are important entities such as the road network, the 
river, the riparian zone and the railway network, that are 
not considered for generalisation in the framework of this 
work. 

 
Figure 1. Initial data visualization. 

3.2 Methodology 

A data-driven and cartographic oriented approach for the 
generalisation of land-use cadastral data is adopted. The 
selected operators, criteria, rules, parameter values and 
constraints depend on the data features (e.g. polygons 
with categorical semantics). Generalisation is applied 
with the polygon aggregation operator based on 
cartographic, geometric and semantics rules (van 
Smaalen, 2003; Cheng and Li, 2006; Haunert and Wolff, 
2010; Park and Yu, 2011; Dimov et al., 2014; Peng et al., 
2017; Susetyo and Hidayat, 2019; Li et al., 2020; Shen et 
al., 2020). The proposed method is implemented with 
ArcGIS basic geoprocessing tools customized with 
Python and the ArcPy library. Moreover generalisation 
results are evaluated with quantitative measures that 
assess the global changes in map geometry and semantics 
(Cheng and Li, 2006; Alves et al., 2010; Dimov et al., 
2014).  

The proposed method applies a cartographic 
generalisation constraint to the cartographic/geographic 
model entities, which is used for the selection of “small” 
polygons (Mikeli, 2019).  

To the best of the authors’ knowledge this is the first 
generalisation research for land-use data at parcel level 
collected by the Hellenic Cadastre. For the purpose of the 



research a classification schema/ontology is created to 
handle changes in classification schema across scales 
(Figure 2). The suggested workflow does not require any 
user involvement during the processing and the 
evaluation stage. 

3.2.1 Minimum Map Element definition 

An important factor in the proposed method is the 
definition of Minimum Map Element. The desired 
product of the generalisation, is the map. A map is a 
graphic visualization of the spatial database. For this 
reason it was decided to apply a cartographic constraint to 
the size of polygons in each map scale. Thus, it was 
considered that any polygon on the map after 
generalisation should be greater than the Minimum Map 
Element (MME). MME is defined in this case study as a 
polygon with area 3mm x 3mm at the map scale. MME 
differentiates for each target scale as it is directly related 
to the visual accuracy of the graphical visualization and 
as consequence with the scale (Cheng and Li, 2006). 
Application of specific values can be set in a future work 
as well. 

 
(a) 

 
(b) 

Figure 2. (a) Land-use Classification Schemas across scales (b) 
Land-uses that do not change (The translation from Greek has 
been done by the authors for the purpose of this research). 

3.2.2 Classification schema 

In order to apply parcel generalisation across scales, the 
definition of a land-use classification schema is needed. 

The generalisation is applied to entities geometry and 
semantics. Regarding the semantics, during 
generalisation, the land-use of a small polygon might 
change due to aggregation with a larger polygon. At the 
same time the land-use classification changes for each 
target scale according to the classification schema across 
scales.  

A custom classification schema across scales is created 
for this research, (Figure 2) since to the best of the 
authors’ knowledge no inter scale schema is provided by 
any official Hellenic source. In order to decide on the 
number of classes for each scale, the Topfer – Pillweizer 
Principle of Selection was utilized in combination with 
the area values of the land-use categories. As shown in 
Figure 2, at each scale the level of detail for land-use 
classes changes. The smaller the scale, the more general 
become the land-use classes. By introducing generality to 
each level the semantic scale is also reduced. Moreover, 
in smaller scales there are fewer land-uses classes, which 
are the result of merging similar land-uses classes of a 
more detailed scale level. A number of land-uses (e.g. 
river and riparian zone, road network, railway) are 
retained at all scale levels, since they do not appear in 
parcels and cover a large area in relation to the target map 
scales.  

The generalization methodology includes two main 
phases selection and aggregation. 

3.2.3 Selection phase  

The selection operator is used to specify the polygons to 
be generalized. All polygons which are smaller than 
MME in the target scale are selected to undergo 
generalisation.  

3.2.4 Aggregation phase – Best Neighbour Definition 

The aggregation operator is used to merge the geometry 
of a small polygon to the most appropriate adjacent 
polygon (Best Neighbor Polygon) and possibly change 
the semantics. The Best Neighbour Polygon (BNP) is 
determined by semantic and geometric criteria, which 
cover the following cases: 

1) If there is only one neighbour the small polygon 
aggregates with it. 

2) If there are more than one neighbours and one of them 
has the same land-use value (at source scale) with the 
small polygon, the small polygon aggregates with that 
neighbour. 

3) If there are more than one neighbours with the same 
land-use at source scale with the small polygon, the small 
polygon merges with the neighbour with the longest 
common boundary. 

4) If there are no neighbours with the same land-use 
value with the small polygon at source scale schema, and 
there is only one neighbour with the same land-use value 



at the target scale schema the small polygon merges with 
it. 

5) If there are no neighbour with the same land-use value 
with the small polygon at source scale, and there are more 
than one neighbours with the same land-use value at the 
target scale the small polygon merges with the neighbour 
with and the longest common boundary. 

6) If the small polygon has no neighbours, it merges with 
the land-uses polygons which do not take part in 
generalisation (e.g. river, riparian zone, road network, 
railway) taking into account longest common boundary. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Figure 3. Aggregation criteria – implementation examples. To 
the left are the parcels before aggregation and to the right after 
aggregation. In each example the small purple polygon is 
selected to be generalized (a) only one neighbor (b) only one 
neighbor with same land-use value (c) more than one neighbors 
with same land-use value (d) no neighbor with same land-use 
value at source scale and one neighbor with same land-use value 
at target scale (e) no neighbor with same land-use value. 

To summarize the aggregation criteria, when choosing 
the best neighbour polygon the semantic similarity is 
emphasized. A neighbour with the same land-use value at 
the source scale is considered inherently better than the 
others for merging and a neighbour with the same land-
use value at the target scale is inherently better for 
merging than the one with which the small polygon has a 
longest common boundary. 

At this point it should be mentioned that instead of 
comparing the length of the small polygon common 
boundary to each neighbour, the Neighbors Common 
Length Rate (NCLR) index is utilized in order to 
normalize the adjacency criterion to be independent of 
the polygon size. 

𝑁𝐶𝐿𝑅
𝑐𝑜𝑚𝑚𝑜𝑛𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦𝑙𝑒𝑛𝑔𝑡ℎ
𝑠𝑚𝑎𝑙𝑙𝑝𝑜𝑙𝑦𝑔𝑜𝑛𝑝𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟

 (1)

 

Finally, at each aggregation the newly created polygon 
inherits the land-use value of the larger original polygon 
(Figure 3). 

 

Generalisation Algorithm 

Input Spatial table with polygon geometry recoding 
the parcels and the land-use values for the 
area of interest 

1: Identification of building blocks 

2: Calculation of Minimum Map Element at 
target scale 

3: For each building block: 

4: Find the polygon with the minimum area 
(min_polygon) 

5: If (min_polygon > Minimum Map Element) 
→ Next building block 

6: Else: find min_polygon Best Neighbor 
according to above criteria, merge, 
aggregate, update building block data 

7: Find the polygon with the minimum area 
(min_polygon) on the updated building 
block 

8: If (min_polygon > Minimum Map Element) 
→ Next building block 

9; Else: repeat the process for this building 
block 

Output Generalized data at selected scale for the area 
of interest 

Table 1. Proposed method generalisation workflow.  

3.3 Implementation 

The proposed method is implemented using simple 
ArcGIS geoprocessing tools (e.g. calculate area, find 
adjacent polygons for a specific polygon, spatial merge, 
aggregate, update, dissolve etc) in the Python framework 
in conjunction with the ArcPy library. The generalisation 
method is presented in Table 1. A common generalisation 



process is applied to the spatial data in two ways: star and 
ladder generalisation (Mikeli, 2019). 

3.3.1 Star generalisation  

The method is applied to the source spatial data 
(reference scale 1:2500) to create maps at scale 1:5K, 
1:10K and 1:25K. 

3.3.2 Ladder generalisation  

The method is applied to the source spatial data 
(reference scale 1:2500) to create the 1:5K map. The 
1:5K map data are generalized for the production of 
1:10K map and the 1:10K map data are generalized for 
the production of 1:25K map. 
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(i) 

 

(j) 

Figure 4: Generalisation implementation (due to template 
limitations images have been downsized). On the left, source 
data are portrayed at the target scale without generalisation and 
on the right the generalisation results are portrayed at target 
scale: (a) urban area source scale 1:2500 (b) urban area 
generalized data at target scale 1:5K (c) urban area source scale 
1:5K (d) urban area generalized data at target scale 1:10K 
(source 1:5000) (e) urban area source scale 1:10K (f) urban area 
generalized data at target scale 1:25K (g) urban area source 
scale 1:2500 (h) urban area generalized data at target scale 
1:10K (i) urban area source scale 1:2500 (j) urban area 
generalized data at target scale 1:25K. 

3.4 Results & Evaluation 

The method was applied to the initial data, for the urban 
and non urban sub-area, in order to produce maps of 

scales 1:5Κ, 1:10Κ and 1:25Κ. Moreover the method was 
applied with the same aggregation criteria and the same 
Minimum Map Element to both urban and non-urban sub 
areas. 

The results for both procedures (star and ladder 
generalisation) are presented in Figure 4 for the urban 
subarea and in Figure 5 for the non-urban subarea. 

 

 

(a) 
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(c) 

 

(d) 

 

(e) 

 

(f) 

Figure 5: Generalisation implementation (due to template 
limitations images have been downsized). On the left, source 
data are portrayed at the target scale without generalisation and 
on the right the generalisation results are portrayed at target 
scale: (a) non urban area source scale 1:2500 (b) generalized 
non urban data at scale 1:5K (c) non urban data source scale 
1:2500 (d) generalized non urban data target scale 1:10K (e) 
non urban area data source scale 1:2500 (f) non urban area data 
generalized target scale 1:25K. 

Maps created by ladder and star generalization are 
considered successful as the legibility and semantic 
criteria are satisfied based on the management of “small 
polygons” and the adoption of a scale specific 
classification schema. In order to evaluate the proposed 
method, the changes in land the uses were assessed. The 
change in the percentage coverage of each land-use 
(Table 2) was computed utilizing the average and the 
total (sum) value while applying the classification of the 
target scale. Changes in non urban subareas are smaller 
than in the urban subarea. This is in accordance with the 
larger size of parcels which results to smaller degree of 
generalisation. Average change percentages in ladder 
generalisation are smaller than in star generalisation due 
to the scalar application. Total change percentages are 
also smaller in star generalization since aggregation is 
guided by “small polygons” in relation to target scale 
whereas in ladder generalization aggregation is applied 
multiple times resulting to greater changes. However, 
results are influenced by the parcel size, the land-use 
distribution and the classification schemas. 

 



 

Mean & Sum of land-use change (%) 

  Urban Area Non-Urban Area 

Source Target Mean  Sum Mean  Sum 

1:2500 1:5K 0.22 2.61 0.04 0.35 

1:2500 1:10K 0.86 6.25 0.06 0.39 

1:2500 1:25K 2.02 12.14 1.79 10.78 

1:5000 1:10K 0.74 8.17 

(10.78*) 

Not 
applied 

Not 
applied

1:10K 1:25K 1.42 7.32 

(18.1*) 

Not 
applied 

Not 
applied

Table 2. Evaluation of results (* cumulative values in relation to 
1:2500) 

4.  Conclusion 

Generalisation is an important procedure in map 
production. The exponential growth of spatial data 
created an urgent need to organize them into functional 
structures, such as spatial databases. In order to use 
spatial data in different spatial analysis scenarios (such as 
planning), visualize them at different scales or even 
maintain them in an efficient way, spatial data 
generalisation is an essential process. Generalisation can 
influence the semantic and geometric aspect of spatial 
data, although the used operators and the aim of each is 
different.  

In this paper, cadastral parcels with land-use attributes 
were generalised to produce large scale maps. 
Generalisation is applied with the polygon aggregation 
operator based on cartographic (Minimum Map Element), 
geometric (Best Neighbour Polygon) and semantics rules 
(scale dependent classification schema).The proposed 
methodology was applied in a case study for cadastral 
data provided by the Hellenic Cadastre. It is implemented 
in ArcGIS environment by a custom developed routine 
using the ArcPy library methods and basic geoprocessing 
tools. The proposed method can be used for land-use as 
well for land-cover polygon generalisation. It can be used 
to generalise any polygon database with semantic features 
that can be schematized in different conceptual levels. 
Finally, it is considered to be useful for multiscale 
mapping and multiscale spatial databases. Although the 
results of the proposed algorithm are very promising, 
there are always improvements to be done. The first of 
our aims is to implement the proposed algorithm in an 
open-source environment such as PostgreSQL/PostGIS. 
This is possible since the method uses OGC Simple 
Feature Model and is based on basic GIS functions such 
as finding neighbour polygons, computing common 
border, aggregation etc. An interesting extension could be 

for the user to set critical values depending on target scale 
and entities area or different weights to specific land-
uses. Moreover, the method should be applied to larger 
and different areas in order to check the rules 
completeness and possibly alter or even state different 
rules. Finally, the method could be slightly altered (e.g. 
utilizing more generalisation operators such as collapse) 
and applied for the creation of medium scale maps (e.g. 
1:50K, 1:100K etc) as well. 
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