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Abstract: When users zoom out on a digital map, some area objects become too tiny to be seen, resulting in visual
clutters. To avoid this problem, the relatively unimportant areas should be merged with their neighbors to form larger
areas. In order to provide small and smooth changes so that users can easily keep their contexts, we merge a pair of
areas by expanding one over the other and parallel the merging operations. We also require that the area objects involved
in paralleled merging operations should not have any common neighbor so that the topology of the map can be easily
maintained. The zooming of our map is realized based on the topological area partitioning tree (GAP-tree) and the space-
scale cube (SSC). Our case study shows that our method improves the zooming visualization. We consider that paralleling
generalization operations is an important step towards continuous map generalization.
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1. Introduction

When users are reading a digital map, they expect differ-
ent levels of detail (LoDs) depending on the scales. For
example, they may want to see individual buildings when
zooming in and see built-up areas when zooming out. That
is why geographical information is dependent on the scale
(Müller et al., 1995; Weibel, 1997). In order to prepare
map data for different scales, a detailed map is general-
ized to generate coarser data for maps at smaller scales,
which is known as map generalization. Mackaness et al.
(2016) gave a taxonomy of generalization algorithms, in-
cluding selection, simplification, aggregation, and so on.
Often, a multi-representation database (MRDB) is utilized
to store maps at different scales and to send proper data
to clients on request (e.g., Hampe et al., 2004). However,
large and discrete changes between different map represen-
tations may confuse users, so continuous map generaliza-
tion (CMG) is needed to provide the vario-scale map with
smooth scale transition. Algorithms of CMG have been
proposed to morph raster maps (e.g., Pantazis et al., 2009),
to morph polylines (e.g., Nöllenburg et al., 2008; Deng and
Peng, 2015; Li et al., 2017a), to generalize buildings (e.g.,
Li et al., 2017b; Touya and Dumont, 2017), to transform
road networks or river networks (e.g., Šuba et al., 2016;
Chimani et al., 2014; Huang et al., 2017), and to transform
administrative boundaries (e.g., Peng et al., 2016).

Area objects are important features on maps. When users
zoom out, some area objects become too tiny to be seen,
which results in visual clutter. The clutter can be avoided
by generalizing the area objects. The generalization op-
erators include merging (e.g., Haunert and Wolff, 2010),
aggregating (e.g., Shen et al., 2019), amalgamating (e.g.,
Regnauld and Revell, 2007), splitting (e.g., Meijers et al.,

2016), and collapsing (e.g., Haunert and Sester, 2008). How-
ever, if zooming is realized by switching between some
levels of map representations, large and discrete changes
usually happen. This kind of changes may cause users to
lose track of their area objects of interest (van Kreveld,
2001). In order to solve this problem, we smoothly and
parallelly generalize the area objects.

This paper is organized as follows. Section 2 reviews some
related work. Our methodology is presented in Section 3,
followed by a case study in Section 4. Finally, Section 5
draws the conclusion and present our future work.

2. Related work

2.1 Merging of area objects

Much research has been devoted to the merging of area ob-
jects. Haunert and Wolff (2010) developed a method based
on mixed-integer programming to merge area objects in
order to generate a map at a certain scale. Cheng and Li
(2006) proposed three choices of selecting neighboring ar-
eas to merge, i.e., the neighbor has the largest size, shares
the longest boundary with the least important area, or has
the closest class to the least important area. Thiemann and
Sester (2018) proposed a chain of operators to generalize
a land-cover map. In the chain of processing area objects,
they integrated cleaning, dissolving, splitting, aggregating,
reclassifying, and simplifying.

2.2 Gradual merging of area objects

To provide scale transition of small changes, van Oosterom
(2005) proposed the topological Generalized Area Parti-
tioning (tGAP) tree, where in each step the least important
area is merged into its most compatible neighbor. Peng et
al. (2020) tried to find an optimal sequence to merge area
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objects based on the A? algorithm or an integer linear pro-
gram. Šuba et al. (2016) continuously generalized a planar
map of a road network.

Van Oosterom and Meijers (2014) developed the concept
of the space-scale cube (SSC). The bottom of the SSC is a
detailed topographic map, and all the area objects extrude
along the z-axis. In the SSC, an area on the map becomes
a polyhedron, and the common boundary of two areas is
a vertical wall. Whenever a generalization operation hap-
pens, the extrusions of the involved areas stop; then, the
newly generated areas take the place and start to extrude.
On this basis, the map at any scale can be generated by
slicing the SSC with a horizontal plane at a corresponding
z-coordinate. That is to say, the scale becomes the third
dimension of the map in the SSC. Furthermore, they repre-
sented the smooth tGAP in the SSC. A typical example is
that an area merges with another one by gradually expand-
ing over it. In the SSC of the smooth tGAP, the wall starts
to tilt when the expansion begins. To build an SSC of the
smooth tGAP, Šuba et al. (2014) proposed three methods
to merge a pair of areas, which are the Single flat plane,
the Zipper, and the Eater. Basically, the winner area grad-
ually expands over the loser area. We will use the Eater
because it works for all kinds of polygons, While the other
two methods have limitations for some special cases. For
example, the two other methods do not work for some con-
cave polygons.

2.3 Paralleling generalization in CMG

Many methods of CMG naturally parallel generalization
operators. In morphing polylines, the points of the poly-
lines are moved parallelly (e.g., Nöllenburg et al., 2008; Li
et al., 2017a). Li et al. (2017b) parallelly generalized indi-
vidual buildings. In those methods, the polylines and the
buildings were generalized parallelly and independently.
Peng and Touya (2017) and Touya and Dumont (2017)
generalized buildings to built-up areas. However, there
is no simple relationship between their intermediate-scale
maps and their source maps. Therefore, all the intermediate-
scale maps of buildings have to be sent from the server to
the clients, which is network intensive.

3. Methodology

In order to provide smooth merging so that map users can
easily keep track of their area objects of interest, we merge
by gradually expanding an area over another area (see Fig-
ure 1q for an ongoing expansion). This expansion can be
realized by slicing the space-scale cube (SSC, van Oost-
erom and Meijers, 2014) of Figure 2a from bottom to top.
For example, Figure 1q is obtained by slicing Figure 2a
at z = 250. The details of slicing an SSC are illustrated
in Meijers et al. (2020). The SSCs of Figure 2 were built
based on the Eater (see Section 2.2). In Figure 2, the z-
coordinates are 100 times of the state values in Figure 1.
We did this multiplication so that the contents can be bet-
ter observed; otherwise, the two SSCs will be very short
when displayed. Note that the merging is independent of
users’ area objects of interest; the merging operations hap-
pen outside the region of interest are also realized by ex-
panding.

We define an event as a single generalization operation,
such as merging an area into a neighbor. Two areas are
neighbors if they share a common boundary with length
larger than 0 (sharing a point does not make the two areas
neighbors). For example, Figure 1e is obtained from Fig-
ure 1d by processing one merging event. Similarly, Fig-
ure 1l is obtained from Figure 1k by processing two merg-
ing events. We define a step as a set of events happening
at the same animation duration. In our method, a step is
completely processed before the next step takes place (all
sequential). We define a state as the point when a step
starts or finishes. For example, there are seven states in
the merging sequence of Figures 1d–j and five states in the
merging sequence of Figures 1k–o (i.e., states 0, 2, 4, 5,
and 6). Note that the value of a state is also the total num-
ber of events processed so far.

There are two benefits of paralleling merging operations.
First, parallelization avoids unnatural zooming. Without
parallelization, sequentially processing generalization op-
erations may result in no change at some locations in a
zooming duration, which is unnatural (van Oosterom and
Meijers, 2014). Therefore, van Oosterom and Meijers (2014)
suggested paralleling the generalization operations, but no
implementation, testing, or assessment of the idea was pro-
vided. Second, parallelization brings smoother zooming.
Although the SSC allows to deliver a map at any scale, only
16 frames by default will be created to display in one sec-
ond. When showing an animation zooming, we set 16 as
the default value of frames per second (FPS). This value is
adequate to provide the visual continuity (Read and Meyer,
2000, p. 24). If the merging operations happen sequentially
instead of parallelly, it is more likely that the gap between
two frames is larger than the gap between two states. Then
there is no animation of smooth merging at all. For exam-
ple, if the consecutive frames are Figures 1d, 1e, and 1f,
then users can only see discrete merging. In contrast, if the
consecutive frames are Figures 1k, 1r, and 1l, then users
can really see an ongoing expansion. The more merging
operations we parallel, the smoother the expansion process
seems.

When merging parallelly, we require that the area objects
involved in different merging events of the same step must
not be neighbors, which makes the merging events inde-
pendent from each other. In this way, it is easy for us to
maintain the topology of the map. In order to realize the
requirement, we block the neighbors of the areas once we
have found an event. We show a greedy algorithm to find
the parallel merging events for each step in Section 3.1.
Then, we integrate the events into the tGAP database ta-
bles (Section 3.2), followed by integrating the events into
the SSC (Section 3.3). In Section 3.4, we show how to
snap the zooming to valid states to avoid half-way merging
animation as stopping halfway will result in showing sliv-
ers at a static state. In Section 3.5, we define the animation
duration of zooming from one state to another state.

3.1 A greedy algorithm

For each merging event, our greedy algorithm tries to merge
the least important area into its most compatible neighbor.
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Figure 1. A comparison of different scale-transition strategies. Each arrow inside the subfigures indicates a merging
operation. The arrow in the right-hand side indicates the states of zooming out. (a–c): All changes are processed in
one go. (d–j): All changes are sequenced one by one rapidly. (k–o): Changes are grouped, resulting in more animation
duration for every change. The numbers are the face IDs.

We define the importance and the compatibility according
to van Putten and van Oosterom (1998). That is, the im-
portance of an area is the multiplication of its size and its
class weight. Currently, all the class weights are set to 1,
which leads to that the smallest area is the least important.
The compatibility value between a pair of areas is the mul-
tiplication of the common boundary’s length and the class
similarity of the two areas.

Figure 3 shows the flowchart of our greedy algorithm. The
process starts with state s = 0 and a detailed map of area
objects, M0. Expression |Ms| denotes the number of area
objects of the map at state s. Parallel parameter rparallel
specifies the proportion (i.e., percentage, when multiplied
by 100) of the number of the area objects that we expect to
merge parallelly, where rparallel ∈ [0, 1]. Variable ntarget

denotes the number of area objects that we expect to merge
in a step. However, we cannot always find ntarget events

because some areas may be blocked as explained before
(also see Figure 4). Therefore, we use variable nevent to
represent the number of events that actually happened within
the step. In the algorithm, an area is free if it is not involved
in an event and is not blocked. Figure 4 shows an example
of blocking the surrounding neighbors of aleast and anbr.
Note that the gray area in Figure 4a is not blocked because
it is not considered a neighbor of the green area (sharing a
point does not make the two areas neighbors).

Finally, the merging events will be stored as records in
tGAP database tables (see Figure 5). Figures 1k–o show
a sequence of four merging steps obtained by our greedy
algorithm, where parallel parameter rparallel is set to 0.3
(Note that this is an extremely high value, just used to ex-
plain the principle in an artificial simple example).
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(a) The SSC of the single merging of Figures 1d–j. (b) The SSC of the parallel merging of Figures 1k–o.

Figure 2. In the left SSC, only one merging event is happening at a specific state (z-dimension), while in the right SSC
multiple merging events may happen at the same state.

ntarget = drparallel · |Ms|e, nevent = 0

Select the least important area aleast
from the free areas

Find the most compatible neighbor anbr

Yes

Yes

nevent < ntarget and
free areas exist

No

anbr is free

block aleast

Yes

|Ms| > 1

No

Define an event of aleast and anbr; increase nevent by 1

Output merging events of all the steps

Merge all the pairs of areas;
free all the blocked areas;
increase s by nevent;
create Ms

No

Block surrounding neighbors of aleast and anbr

Input s = 0, Ms, rparallel

Figure 3. The flowchart of our greedy algorithm to find the merging events for all the steps.

3.2 Integrating the parallel events into the tGAP database
tables

Meijers (2011b, p. 159) designed three tables to record the
information of faces, edges, and face hierarchies, which to-
gether form a tGAP (also see Figure 5). We add columns
state low (slow) and state high (shigh) into the table so that
it is easy to see when a face should appear or disappear (see
Tables 1a and 1b, where all other columns, except face id,
are hidden). For zooming out, when the slicing plane ar-
rives at the low state of a face, the face appears because
of the merging of two faces. When the slicing arrives at
the high state, the face should merge with another area.
Comparing between the tables of single merging and par-
allel merging, we observed some differences of the values.
For example, the shigh values of faces 1 and 2 are changed
from 1 to 2 (see Table 1). Also, the slow value of face 8 is
changed from 1 to 2 (see Table 1). Note that the face ids

are defined in Figure 1. Similarly, the columns and records
of both the edge table and the face-hierarchy table will be
changed accordingly.

3.3 Integrating the parallel events into the SSC

Recall that we merge a pair of areas by expanding the more
important one over the less important one. The Eater of
Šuba et al. (2014) is used to triangulate the less impor-
tant area and to tilt the triangles. Then the tilted trian-
gles are integrated into the SSC (see Figure 2) so that we
can slice the SSC to achieve smooth merging. For the
case of single merging, if a pair of areas have state-high
value shigh, then the merging animation always starts at
state smerge = shigh − 1 (see Table 1a). The less im-
portant area completely disappears at state shigh. In the
face table, a row will be added to record the new area,
and its slow value will be the previous shigh value. The
new area takes the combined place of the pair of areas.
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(b)(a)

Figure 4. The process of finding parallel merging events for a step, where parallel parameter rparallel = 0.3. (a) From all
the free areas, the least important one is selected to merge into its most compatible neighbor. Then the surrounding areas
are blocked (marked by the crosses). (b) Next, the least important area from the remaining free areas is selected to merge
with the most compatible neighbor, and the surrounding areas are also blocked.

Table 1. Some columns of the face tables. Columns slow, smerge, and shigh show the states when the faces appear, when
the faces start to disappear, and when the faces completely disappear. In table (b), the different values from table (a) are
underlined. Column smerge is not really stored in the database. We show the column so that it is easy to see the differences
between the slow values and the smerge values.

(a) The face table of the single merging shown in Figures 1d–j.

fid slow smerge shigh

1 0 0 1
2 0 0 1
3 0 1 2
4 0 4 5
5 0 3 4
6 0 2 3
7 0 2 3
8 1 1 2
9 2 5 6

10 3 3 4
11 4 4 5
12 5 5 6
13 6 — —

(b) The face table of the parallel merging shown in Figures 1k–o.

fid slow smerge shigh

1 0 0 2
2 0 0 2
3 0 2 4
4 0 4 5
5 0 2 4
6 0 0 2
7 0 0 2
8 2 2 4
9 2 5 6

10 4 2 4
11 4 4 5
12 5 5 6
13 6 — —

Take Figure 1 as an example, area 1 is merged into area 2
(Figures 1d), and area 8 is generated to take the combined
place (Figures 1e). The tilted triangle is the one that spans
from z = 0 to z = 100 (i.e., from state 0 to state 1) in
Figure 2a. In Table 1a, the slow value of area 8 is 1, which
is the shigh values of areas 1 and 2.

For the case of parallel merging, if a step consists of nevent

events and the step finishes at state shigh, then the step
starts at state smerge = shigh − nevent. The reason is that
if the nevent events would happen sequentially (i.e., single
merging), then they would take place from state shigh −
nevent to state shigh. When all the events take place par-
allelly in the same step, each of the events can share its
merging duration. As a result, each of the parallel events
has more time to take place than the events would happen
sequentially. In other words, for a merging step, each of
the events has more time to take place if there are more
parallel events.

3.4 Snapping to a valid state

For a zooming action based on the SSC, we always snap
the map to a valid state. In this way, we can avoid that a
merging operation stops half-way, and users will not see
transition artifacts (such as slivers). Take the sequence of
Figure 1k–o for example, the merging animation should
stop at either 1k or 1l, but not at 1r. Note that some states
are not valid because of the parallel events. For exam-
ple, state 1 is not valid in the sequence of Figure 1k–o,
where the list of valid states is Svalid = [0, 2, 4, 5, 6]. In

order to snap to one of the valid states after a zooming op-
eration, we have to communicate them to the client side.
There are multiple options. The most simple one assumes
that, during the creation of the parallel SSC, we can al-
ways perform the ntarget number of events in all steps.
In that case, we just have to communicate the number of
areas and the ratio rparallel. In case of high value ratios
(e.g., rparallel > 0.01), this assumption may be incorrect.
We then have to communicate the valid states by sending
them explicitly. Because this list may get rather large, we
only send exceptions.

According to how much a user has zoomed, the target scale
(i.e.,1 : St) can be computed. Huang et al. (2016) sug-
gested that the average density of the original map should
be preserved for a smaller-scale map. Their suggestion is
based on the assumption that the area density of the base
map is well designed, which is reasonable. We use vari-
able Areal to denote the total areal size in reality of all the
area objects . Then, the size on screen at scale 1 : St

is Areal

/
S2
t . In order to keep the density, we require

Nb

Areal

/
S2
b

=
Nb − Et

Areal

/
S2
t

, (1)

where parameter Nb = |M0| is the number of areas on
the base map, parameter Sb is the scale denominator of the
base map, and variable Et is the total number of events
happening from the base map to the map at scale 1 : St

(in this case, an event is that an area is merged into another
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tGAPTopolObject
+ imp low: double
+ imp high: double
+ state low: integer
+ state high: integer

Face
+ face id: integer
+ imp own: double
+ feature class: integer
+ area: numeric
+ pip geometry: point
+ mbr geometry: box2d

Edge
+ edge id: integer
+ start node id: integer
+ end node id: integer
+ left face id low: integer
+ right face id low: integer
+ left face id high: integer
+ right face id high: integer
+ geometry: polyline

1..*

2

+ face id: integer
+ parent face id: integer

FaceHierachy

1,2

2

+ getGeometry(): polygon

Figure 5. The UML diagram of the classes stored in tGAP
database tables. This diagram is a slightly improved ver-
sion of Meijers (2011b, p. 159). In the face table, property
pip geometry stores a point (usually the center) in the face
(polygon).

one). Equation 1 yields

Et = Nb

(
1− S2

b

S2
t

)
, (2)

In our example regarding to list of valid states Svalid, if
event number Et ≤ 0, the base map should be presented;
if Et ≥ 6, the map with the final single area should be
presented. Otherwise, if 0 < Et < 6, we snap event
number Et to the closest value (measured in events) of
list Svalid. The snapped number of events is denoted by
Et,snap. The scale denominator corresponding to event
number Et,snap can be computed by

St,snap = Sb

√
Nb

Nb − Et,snap
. (3)

where this equation is an inverse function of Equation 2.
At the end of the zooming action, the map will snap to
state st,snap at scale 1 : St,snap. Note that state st,snap
always has the same value as event number Et,snap.

3.5 Animation duration of a step

When users are zooming from a scale to another scale,
some steps take place to change the map from a state to an-
other one. We define the zooming duration as the amount
of animation time that the map reacts to one scroll of the
mouse wheel. The zooming duration often is the sum of
the animation durations of several merging steps. The an-
imation duration of each event depends on the number of
events between the two states, the zooming factor of the
scale, and the zooming duration. On the one hand, the ani-
mation duration should not be too short as then the anima-
tion will be too fast. On the other hand, if the animation
takes too long, the map will not be interactive, and users
will be “frustrated”. Meijers et al. (2020, Section 4.3) have
introduced the zooming factor and the zooming duration.

They allowed users to set the two parameters, which is also
the case in this paper. Because of the page limit, we skip
the deductions and show some conclusions as following.
The animation duration of a set of events happening se-
quentially is

tsingle =
tzoom
Nevent

,

where tzoom is the zooming duration, and Nevent is the
number of events happening in one scroll of the mouse
wheel. The animation duration of a set of events happening
parallelly is

tparallel =
tzoom
nstep

,

where nstep is the number of steps happening in one scroll
of the mouse wheel. As Nevent is larger than or equal
to nstep, we have tparallel ≥ tsingle.

4. Case study

Figure 6 shows the topographical map of this case study.
In each step, we want to parallelly merge some proportion
of the areas. We tried three cases: 0.1%, 1%, and 10%.
The three versions of map can be browsed online.1 As no
paper has recommended values for the zooming factor or
the zooming duration, we respectively set the default val-
ues to 1 and 1 s, which performed well according to our
experience. Figure 7 shows an example of our web map
when parallel parameter rparallel = 0.01. When zooming
on our web maps with different parallel parameters, we
observed that the impressions of the maps based on sin-
gle merging2 and based on parallel merging with parame-
ter rparallel = 0.001 are almost the same. The reason is that
the smooth merging happens too fast, and we cannot really
see the merging animation. We get the feeling of smooth
merging when rparallel = 0.01. When rparallel = 0.1, the
smooth merging is even more clearly visible. In order to
show a better comparison of single merging and parallel
merging, we put two maps together (see Figure 8), where
the parallel parameter is 0.1.3

5. Concluding remarks

This paper investigates on paralleling generalization opera-
tions, using the merging operation as a case study. Accord-
ing to our experiment, the events of parallel merging can
be better observed than the events of single merging. This
result shows the potential that, when zooming on a map
based on parallel-event operations, users can keep their
context better and can have smoother map interaction ex-
perience.

Many topics related to this research need to be investigated
further. We need to test our method on a topographic map
with much more objects, In that case, the client side will
need to dynamically load and process the map data for the

1All of our web maps can be found at https://pengdlzn.githu
b.io/webmaps/2020/10/merge/.

2See the web map at https://pengdlzn.github.io/webmaps/2
020/10/merge/top10nl-single-merging.html.

3See the map of comparison at https://pengdlzn.github.io/w
ebmaps/2020/10/merge/top10nl-0.1-comparer.html.

https://pengdlzn.github.io/webmaps/2020/10/merge/
https://pengdlzn.github.io/webmaps/2020/10/merge/
https://pengdlzn.github.io/webmaps/2020/10/merge/top10nl-single-merging.html
https://pengdlzn.github.io/webmaps/2020/10/merge/top10nl-single-merging.html
https://pengdlzn.github.io/webmaps/2020/10/merge/top10nl-0.1-comparer.html
https://pengdlzn.github.io/webmaps/2020/10/merge/top10nl-0.1-comparer.html
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1 km

Figure 6. The topographic map represents the place in
the south of Limburg, The Netherlands. There are 13,238
parcels. The map is for scale 1 : 10,000.

place and the scale being viewed. The client also needs
to remove the loaded data that is not used for a while in
order to release memory. With those functionalities, our
prototype will be able to handle a map with arbitrary num-
ber of area objects. Our current event consists of only the
merging operation, it is also necessary to involve split op-
eration because sometimes a merging operation results in
an unnatural area (Haunert and Sester, 2008; Meijers et
al., 2016). To avoid clutter of vertices for zooming out, it
is necessary to simplify the boundaries of the areas. Many
existing methods could be integrated into our parallel paradigm.
Meijers (2011a) proposed a method to simplify the bound-
aries parallelly. Their results are topologically safe. An-
other future work is to investigate how much map users
benefit from our parallel merging. We need to conduct
some usability tests based on the experience of Šuba (2017,

Figure 7. An overview map. The map is generated from the
base map by parallel merging with parameter rparallel =
0.01.

Figure 8. A comparison of single merging (left) and par-
allel merging (right, rparallel = 0.1). The slider can be
moved to tune the widths of the two map canvases. Some
sudden changes across the slider can be observed.

Section 6.7) and Midtbø and Nordvik (2007). We currently
drive the merging by the relationship between the number
of areas and the scale; an other strategy is to drive by the
relationship between the size of the smallest area and the
scale. We also need to test which of the two strategies is
better.
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