

Automated processing of state civil maps of middle scales

Karel Staněk a,
*, Petr Šilhák a

a Masaryk university Brno, Czech Republic, karst@geogr.muni.cz, 408102@mail.muni.cz

* Corresponding author

Abstract: We want to provide information about the early stage of the automatization of civil topographic state maps

in our presentation. Basic concepts and used procedures will be presented. Part of the presentation is database structure

and implementation experiences. At the beginning is brief information about middle-scale topographic maps.

Keywords: cartographic generalization, rule based system, PostGIS, ArcGIS Pro, topographic base map

1. Introduction

On March 1st, a partial automatization project of the

generalization map content, text placement, and map

frame design started. The project's aim is not full

automatization but to significantly decrease the number of

cases solved manually by operators (to shrink three year

period of the state map actualization nowadays to 2 years

in the future). This implementation project follows

previous stages. First, one evaluated the possibility of

automated generalization (2015-2017) for base

topographic maps 1:10000, and the second one in the year

2019 focused on the implementation plan and selection of

implementation team for this actual project. The map

assembly line's supposed enhancement is not only national

map agency motivation for this project. The primary

motivation is the continuously increasing difference

between ZABAGED (Czech state database of fundamental

geographic data) and base topographic map 1:10000. In the

past, ZABAGED was derived from base map 1:10000, but

in the last 20 years is the content of the ZABAGED

enriched by features from cadastral maps, orthophotos,

and lidar measurement. Therefore map 1:10000 is not just

a symbolization of the ZABAGED, and generalization

became a significant part of the assembly process. Finally,

this project is the technological change of the map

assembly line - nowadays, our national mapping agency

uses ESRI ArcGis Desktop custom environment with

Oracle database system. Our project is reflecting a

technological shift in both GIS and DBMS tools. User

interface and graphic generalization are implemented into

ArcGIS Pro, and application logic with model

generalization routines are implemented into PostGIS.

1.1 Middle-scales state maps

State map work (civil one - more than 50years ago were

military and civil national map agencies separated, and still

they are. Nevertheless, both map works use ZABAGED

these days) encompasses middle map scales

1:10000,25000,50000 and 100000. In contemporary

practice, maps in scales 1:10000 and 1:25000 are quite

similar (annotations are strongly reduced on 1:25000, and

some map features missing). Maps 1:50000 and 1:100000

are with a little exaggeration derived through enlargement

or scaling-down compiled source map in scale 1:75000.

Accidentally is a contemporary situation similar to old

imperial map work in scales 1:25000 and 1:75000.

Moreover, here we got another motivation of national map

agency in the project - a clear definition of a separate map

works to fit a particular scale better.

Contemporary practice is a mostly manual derivation of

the map 1:10000 from ZABAGED snapshot (automated

processing is limited to very light vertices weeding,

ArcGIS provided building simplification and elimination

of small objects). Map 1:25000 is compiled similar way;

some results of the map 1:10000 are transferred. The base

for scales 1:50000 and 1:100000 was manually drawn 20

years ago from ZABAGED. That time was ZABAGED

conform with scale 1:10000. Nowadays, just running a

manual update by comparison with topical ZABAGED

snapshot, which has much higher shape granularity. Above

mentioned geometrical base of maps, 1:50000 and

1:100000 is under the name DATA50, available for free to

download.

2. Project description

There are many conceptual approaches to the

implementation of automated cartographic generalization.

In our proposal, several concepts are synthesized, among

significant resources belongs from theory (Brassel and

Weibel, 1988) and from pragmatic (Lecordix and

Lemarié, 2007),(Schürer, 2008).

Our approach is based on rule-oriented processing, which

encompasses the following principles:

• We try to define a deterministic system that

covers a significant part of collision situations

by massive rules.

• Similar rules support situations uncovered by

identifiable rules.

• Too complicated, less frequent, and dissimilar

situations are left for human operators.

• Rules are compiled based on map features in a

collision, topometric relationships surrounding

the collision, and finally, the relationship of

colliding objects to the identified structures.

• Set of constraints identifying collisions.

• Collisions are processed

o from the weakest map feature to the

most stable ones

o from simple collision situation to

complicated ones

o from structure members to unstructured

objects.

Generalization processing is divided into

• Structure recognition and description (derived

from source ZABAGED data). Structures can be

either a single object, group of objects with

various orders or zones.

• Object surrounding situation topometric

description (used for rule identification and

topological check)

• model generalization (uniform operations

solving imperceptibility and auto-coalescence)

• Graphical generalization (symbology

overlapping, solved are only cases where are

symbols overlapped), both generalization

processings are complemented by topological

checks.

Model generalization is applied to previous model

generalization as scales follow; just model generalization

of the map 1:50000 is applied on the results of the

graphical generalization of the map 1:25000.

Figure 1. Process diagram with particular steps included for specific scale.

2.1 Knowledge acquisition

Knowledge acquisition is made by a combination of

several methods. The first input was a list of most frequent

collision situations provided by operators from the

national mapping agency (NMA). That source was

followed by a set of interviews with operators related to

the map compilations. NMA provided us old manuals for

map compilations. We are running extensive carto-metric

measurements over ZABAGED and DATA50 (geometry

of maps 1:50000). We are also trying to identify

generalization procedures on middle-scale maps in our

area in the 20th century. Last but not least is the analysis

of the publications related to the automatization of the map

compilation of other European NMAs. Surprisingly

identification of constraints is more complicated than

rules. The same trouble is acquisition structures from

operator interviews.

Figure 2. Database model of generalization implemented in PostgreSQL. Many tables have been omitted from the image
(enumerations, logging tables, symbology tables etc.).

2.2 Application design

As was already mentioned, implementation of the

generalization procedures running in ArcGIS Pro and

PostGIS environments. Nevertheless, we do not use any

generalization function implemented in ArcGIS Pro or

PostGIS - we use geometric engines and in-house routines.

Structure recognition and model generalization is

implemented in C language, user interface, and graphic

generalization in C#. We also do not use ArcGIS Pro

database connector, but in-house developed one.

In the tender part of the project and this early stage of the

regular part of the project, we are dealing with terrain steps

(slopes, trenches, embankments, cuts), representing the

most exhausting work for operators at the map 1:10000

(40-60% time concerning map sheet configuration).

Slopes are the weakest and most frequent map feature with

productive interaction with communications and water

shores. Besides generalization, slopes need harmonization

of the visualization to be included in the processing.

Figure 3. Generalization processor frontend. Results of graphical generalization of slopes.

3. Implementation into PostgreSQL database

system

Our decision to use the PostgreSQL database system for

analysis and model generalization, which will also serve as

the main data store, was based on the assumption that we

do not want to send large amounts of data between parts of

the generalization systems during the computations.

However, it was clear in advance that the implementation

of some algorithms in PL/pgSQL will be complicated.

Firstly, PL/pgSQL is an interpreted language that is more

of a superstructure over the classic SQL language and

therefore does not provide enough performance for

compute-intensive operations. Sometimes code

implemented in PL / pgSQL can be up to 100 times slower

than similar code implemented in C. Secondly, the

implementation of some algorithms would be very time

consuming using PL/pgSQL syntax.

An alternative was the possibility of other branches of

procedural languages implemented to PostgreSQL, such as

PL/Java, PL/Python or PL/Javascript. At first, this option

seemed relatively feasible but the projects seemed

relatively unmaintained, and these languages also used the

database connectors of each language to communicate

with the database, so this approach would not work for us,

because the data would not be processed directly in the

database.

Finally, we decided to use functions written in C. Since

PostgreSQL is written in C, there is relatively good support

for this way of writing functions. In terms of performance,

this is practically the best option that PostgreSQL

provides. Moreover, due to the existence of the PostGIS

library (which is also written in C), it is possible to get a

huge number of examples written by experts.

Figure 4. Example of code C function implemented into
PostgreSQL.

Implementing functions written in C into PostgreSQL is

relatively easy if you do not need some third-party

libraries. This was a little complication for us because we

need to use the libraries contained in the PostGIS. For the

initial test of the implementation, it was necessary to

compile or use the compiled LWGEOM and

PGCOMMON libraries (both are parts of the PostGIS).

The first library provides the basic geometric types and

operations used in PostGIS. The latter provides a bridge

for the use of LWGEOM in PostGIS. After including these

libraries, it is relatively easy to write very powerful

compute-intensive functions in C language and use them

as plugins in PostgreSQL. Example of how the structure of

PostgreSQL plugin written in C looks can be found in the

PostgreSQL documentation.

The VectGen algorithm code sample can also be seen

below. Input parameters are sent to the function via

macros. This bridges the problem of data type mismatch

between SQL and C. Type checking of input parameters

takes place in the corresponding SQL function, which is

one level higher than the C function.

4. Conclusion

The project is in the beginning. We focus on slope

processing on larger-scale maps as a demonstration topic

for application design. Parallel, we start water streams

scale processing.

5. References

Brassel, K.E. and Weibel, R. (1988). A review and

conceptual framework of automated map generalization,

International Journal of Geographical Information

Systems, 2:3, 229-244, 1988,

DOI: 10.1080/02693798808927898.

Lecordix, F. and Lemarié, C. (2007). Managing

Generalisation Updates in IGN Map Production.

10.1016/B978-008045374-3/50017-X.

Schürer, D. (2008). Das AdV-Projekt ATKIS-

Generalisierung — Digitale Landschaftsmodelle und

Karten aus dem Basis-DLM, KN - Journal of Cartography

and Geographic Information, 58, 191-199, 2008,

DOI: 10.1007/BF03543988.

https://doi.org/10.1080/02693798808927898

