# (Smooth) zoom and pan with vario-scale data

Client-server architecture options and benchmarking their performance

Martijn Meijers Lina Huang Radan Šuba Peter van Oosterom

Faculty of Architecture and the Built Environment,

OTB Research, GIS technology

November 19, 2014 - Gemeente Amsterdam - User committee STW



#### Introduction

- Last meeting:
   Create large vario-scale data structure (2D geometry
   + 1D scale)
- How to visualize contents?
   Given that we want to use a client-server web architecture + large structure
- Today discuss:
  - 1. What are the options?
  - 2. What kind of pan/zoom interaction is possible (smooth transitions possible: yes / no)?
  - 3. How do the different options perform?



## Rendering pipeline

From data to map, i.e. on-screen graphics (OGC, 2000)





# Rendering pipeline

Steps for making a map out of vario-scale data:

- Select relevant topology primitives in data source
  - Slice at correct scale
- Make features
  - Optional: clip edges
  - Form rings of edges, from rings form polygons
- 3. Transform to display elements, style and render polygons





# Rendering pipeline

We tested 3 options:

#### Non-smooth transitions:

- Option A Making a map (every request independent from other requests)
- Option B New map dependent on earlier request(s) (to transfer less data)

#### Smooth transition:

Option C Making a map with 'gradual'/'smooth' transition to new map





Vario-scale structure (top view)





Viewport





Take slice (determine where to slice) and clip (=viewport)





Form polygons





Faces that overlap





Edges that are needed for these faces





Edges that are needed for the visible face parts





Polygon parts on screen (inside viewport)



# Data retrieval – Option A and B





# Data retrieval – Option A and B

Option B





# Making a map – Option C





# Making a map – Option C





# Data retrieval – Option C

Option C





#### Demo

http://varioscale.bk.tudelft.nl/





- Loaded Corine Land cover for UK
- Make requests to webserver simulating 'user interaction'
- Measure:
  - Response time: time to first byte and to last byte (duration)
  - Response size
  - (Number of edges and faces)



Rectangles = user path (zoom and pan actions of a user)



Note: smaller rectangle is larger scale (zoomed in more)



#### Clipping – blue versus Not clipping – green (Option A only)







#### Option A versus B(0,1,2,3) versus C

North to South over whole of Great Brittain, zooming in, out and panning, average measurements





#### Option A versus B(0,1,2,3) versus C

North to South over whole of Great Brittain, zooming in, out and panning, measurements (cumulative)





Not clipping edges leads to excess data.



- Not clipping edges leads to excess data.
- Allows for interactive use at arbitrary map scale: response for options A, B1, C on average < 1 second.</li>



- Not clipping edges leads to excess data.
- Allows for interactive use at arbitrary map scale: response for options A, B1, C on average < 1 second.</li>
- Option A: fits in seamlessly with (back end of) current architectures [(Tiled) WMS, WFS].



- Not clipping edges leads to excess data.
- Allows for interactive use at arbitrary map scale: response for options A, B1, C on average < 1 second.</li>
- Option A: fits in seamlessly with (back end of) current architectures [(Tiled) WMS, WFS].
- Option B: sufficient to remember one previous request, otherwise too expensive to query with no additional savings.



- Not clipping edges leads to excess data.
- Allows for interactive use at arbitrary map scale: response for options A, B1, C on average < 1 second.</li>
- Option A: fits in seamlessly with (back end of) current architectures [(Tiled) WMS, WFS].
- Option B: sufficient to remember one previous request, otherwise too expensive to query with no additional savings.
- Option C: makes smooth zoom transition possible: vario-scale structure very suitable.



Improve implementations: client-side not completely finished.



- Improve implementations: client-side not completely finished.
- Smooth pan: add data while dragging (similar as with smooth zoom).



- Improve implementations: client-side not completely finished.
- Smooth pan: add data while dragging (similar as with smooth zoom).
- Optimize (coordinates are using many digits, independent from scale level).



- Improve implementations: client-side not completely finished.
- Smooth pan: add data while dragging (similar as with smooth zoom).
- Optimize (coordinates are using many digits, independent from scale level).
- Inconsistent line simplification (some lines much more simplified than others).



- Improve implementations: client-side not completely finished.
- Smooth pan: add data while dragging (similar as with smooth zoom).
- Optimize (coordinates are using many digits, independent from scale level).
- Inconsistent line simplification (some lines much more simplified than others).
- More gradual transitions.



## Thank you for your attention

- Delft University of Technology
   Faculty of Architecture and the Built Environment
   OTB Research
   GIS Technology
- dr. ir. Martijn Meijers
   b.m.meijers@tudelft.nl
   tel. (+31) 15 27 85642



#### References

OGC (2000). OpenGIS Web Map Server Interface Implementation Specification.

