Initial Usability Testing of Vario-scale Maps

يف و في الله و الله و الله

Martijn Meijers Radan Šuba Peter van Oosterom

2016-03-22

STW-UC, Bentley, Hoofddorp

Motivation

 Assumption at start of project: Vario-scale maps will provide faster and more effective interaction: Better understanding / mental model

Motivation

- Assumption at start of project: Vario-scale maps will provide faster and more effective interaction: Better understanding / mental model
- Viewer for SSC Now makes it possible to get real / practical experience

Current SSC viewer

- Properties of current viewer implementation:
 - Fast slicing (based on GPU) Smooth content zoom
 - Colour blending for transitions
 - Mixed scale maps (local magnifier)
 - No polished GUI (Graphical User Interface)

Current SSC viewer

- Properties of current viewer implementation:
 - Fast slicing (based on GPU) Smooth content zoom
 - Colour blending for transitions
 - Mixed scale maps (local magnifier)
 - No polished GUI (Graphical User Interface)
- After initial technical problems for scaling out, viewer is working with larger datasets*

^{*7}x7km, 8k objects and 20x20km, 114k objects

What we want to test

What to test **now**:

 Discrete sets of data versus continous changing data

What to test later:

- Analyse different content generation strategies
- Use of different tools (colour blending, local magnifier, perspective view)
- Different types of mouse/keyboard interaction
- Animation / morphing techniques

How we plan to test

- Give user same task for discrete and continous changing dataset + compare, using prepared system
- 2. During a session:
 - Part 1 Prepare:
 - briefing
 - get experience with viewer interface
 - Part 2 Execution:
 - record user and talk-out-loud
 - take movie of the screen
 - record inside user interface the position where user is (if feasible)
 - Part 3 After test:
 - questionnaire
 - personal impression
- 3. What kind of persons? Students / Colleagues
- 4. How many people?
- Interaction through keyboard (no mouse)

Tasks users should execute

Limitation of current implementation: Viewer shows colored polygons only, no text, no linear features

- Put one object in the dataset that we give one classification and use specific color for that object: Track the object (or its surroundings) throughout its scale lifetime
- Give schematic, but quite detailed drawing of location (zoomed in) that user needs to find, starting at zoomed out state
- 3. Start at detailed location (zoomed in): Let user zoom out to whole region and measure how long it takes them to get back to initial position
- 4. . . .

Your input/Brainstorm: Do you have more suggestions?

Thank you for your attention

- Questions?
- Delft University of Technology
 Faculty of Architecture and the Built Environment
 OTB Research
 GIS Technology
- dr.ir. Martijn Meijers
 b.m.meijers@tudelft.nl
 http://www.gdmc.nl/martijn/tel. (+31) 15 27 856 42

