

Building simplification using offset curves obtained from the straight skeleton

- Straight skeleton
- Offset curves
- Building simplification
- Results
- Discussion and Future work

- Polygon as input
- Shrink polygon inwards, with edges moving at constant speed
- Vertices move as well (some faster than others, depend on angle of the vertex)
- If moving vertex collides with non-adjacent edge: polygon is split and shrinking continues for each piece
- Moving vertices trace out set of curves: this is the straight skeleton

- Polygon as input
- Shrink polygon inwards, with edges moving at constant speed
- Vertices move as well (some faster than others, depend on angle of the vertex)
- If moving vertex collides with non-adjacent edge: polygon is split and shrinking continues for each piece
- Moving vertices trace out set of curves: this is the straight skeleton

- Polygon as input
- Shrink polygon inwards, with edges moving at constant speed
- Vertices move as well (some faster than others, depend on angle of the vertex)
- If moving vertex collides with non-adjacent edge: polygon is split and shrinking continues for each piece
- Moving vertices trace out set of curves: this is the straight skeleton

- Polygon as input
- Shrink polygon inwards, with edges moving at constant speed
- Vertices move as well (some faster than others, depend on angle of the vertex)
- If moving vertex collides with non-adjacent edge: polygon is split and shrinking continues for each piece
- Moving vertices trace out set of curves: this is the straight skeleton

- Polygon as input
- Shrink polygon inwards, with edges moving at constant speed
- Vertices move as well (some faster than others, depend on angle of the vertex)
- If moving vertex collides with non-adjacent edge: polygon is split and shrinking continues for each piece
- Moving vertices trace out set of curves: this is the straight skeleton

Edges move inward Image after: Peter Palfrader, http://www.palfrader.org/research/

Vertices also move (some faster than others)

Polygon can be split, if vertex collides with non-adjacent edge

- Definition can be generalized for Planar Straight Line Graph (PSLG)
- Elegant algorithm for construction (Aichholzer and Aurenhammer, 1996; Palfrader, 2013):
 - 1. Triangulate regions between input segments
 - 2. Moving vertices does change size of triangles
 - Triangle collapse (zero size) indicates change in structure of Straight Skeleton

Offset curves

- Once traces of vertices are known, easy/cheap to generate offset curves (Palfrader and Held, 2015)
- For each vertex, keep track of neighbouring vertices at any time t

Offset curves

Area simplification

Algorithm for area simplification (Haunert and Sester, 2007):

- Compute straight skeleton
- 2. Generate offset curves ϵ inwards
- 3. Compute straight skeleton, on resulting shape
- 4. Generate offset curves ϵ outwards

Area simplification

Algorithm for area simplification (Haunert and Sester, 2007):

- 1. Compute straight skeleton
- 2. Generate offset curves ϵ inwards
- 3. Compute straight skeleton, on resulting shape
- 4. Generate offset curves ϵ outwards

Note: Order of inwards — outwards can be reversed (giving different results)

Figure: Input

Figure: Offset curve inward

Figure: Input for 2nd step

Figure: Offset curve outwards

Figure: Result

Building simplification

Figure: Result – Comparison with input

Building simplification

A variant of the algorithm:

- 1. Compute straight skeleton
- 2. Generate offset curves $\frac{1}{2}\epsilon$ inwards
- 3. Compute straight skeleton, on resulting shape
- 4. Generate offset curves ϵ outwards
- 5. Compute straight skeleton, on resulting shape
- 6. Generate offset curves $\frac{1}{2}\epsilon$ inwards

Note: Order can be reversed again.

Figure: Input

Figure: In-Out Result

Figure: Result – Comparison with input

Figure: Input

Figure: In–Out result, larger ϵ

Figure: In–Out result, larger ϵ (compare with input)

Figure: Input

Figure: In-Out-In, result

Figure: In-Out-In, result; (compare with input)

Figure: In-Out-In, result; Small edges still present

Figure: Input

Figure: Out-In-Out

Figure: Out-In-Out; New created dent

Figure: Input

Figure: Out-In

Figure: Input

Figure: In-Out

Figure: Input

Figure: Out-In-Out

Figure: Input

Figure: In-Out-In

Results

- Straightforward algorithm
- Simplifies individual building outlines
- Amalgamates multiple buildings
- Still needs post-processing for small segments

Discussion

- Improve our implementation of straight skeleton, GrassFire¹
- Difficult: determine correct ε
- No rotation needed for input (compare with Minkowski sum)

https://bitbucket.org/bmmeijers/grassfire

Future work

 Smooth transitions between the input and the output: interpolate what is in between (Barequet et al., 2004; Yakersberg, 2004)

Thank you for your attention

- Questions?
- Delft University of Technology
 Faculty of Architecture and the Built Environment
 OTB Research
 GIS Technology
- dr.ir. Martijn Meijers
 b.m.meijers@tudelft.nl
 http://www.gdmc.nl/martijn/tel. (+31) 15 27 856 42

References

- Aichholzer, O. and Aurenhammer, F. (1996). Straight skeletons for general polygonal figures in the plane. In Cai, J.-Y. and Wong, C. K., editors, Computing and Combinatorics, volume 1090 of Lecture Notes in Computer Science, pages 117–126. Springer Science + Business Media.
- Barequet, G., Goodrich, M. T., Levi-Steiner, A., and Steiner, D. (2004). Contour interpolation by straight skeletons. *Graphical Models*, 66(4):245–260.
- Damen, J., van Kreveld, M., and Spaan, B. (2008). High quality building generalization by extending the morphological operators. In *Proceedings of the ICA Workshop on Generalization*, Montpellier, France.
- Haunert, J.-H. and Sester, M. (2007). Area collapse and road centerlines based on straight skeletons. *GeoInformatica*, 12(2):169–191.
- Palfrader, P. (2013). Computing Straight Skeletons by Means of Kinetic Triangulations. Master's thesis, University of Salzburg, Austria.
- Palfrader, P. and Held, M. (2015). Computing Mitered Offset Curves Based on Straight Skeletons. Computer-Aided Design and Applications, 12(4):414–424.
- Yakersberg, E. (2004). Morphing between Geometric Shapes using Straight-Skeleton-Based Interpolation. Master's thesis, Technion Israel Institute Of Technology, Haifa, Israel.

Figure: Input polygon P

Image credit: Jonathan Damen (Damen et al., 2008)

Figure: Q 'traverses' the boundary of P: adding Q to P

Figure: Input polygon P

Figure: Q 'traverses' the boundary of P: subtracting Q from P

Figure: Dilation-Erosion, axis-aligned buildings

Figure: Dilation-Erosion, rotated buildings (main direction axis of building)

Linear axis around vertices with sharp angles

Linear axis around vertices with sharp angles

