
Exploring the use of a generic spatial
access method for caching and
efficient retrieval of vario-scale data in
a client-server architecture

MSc Thesis

Adrie Rovers

Content overview

1

1. Motivation

2. Objectives

3. Methodology

4. Results

5. Future work

Content overview

1. Motivation

2. Objectives

3. Methodology

4. Results

5. Future work

2

Motivation

Classic SSC1

1: Taken from van Oosterom et al. (2014).

• Vario-scale data structures

• Request a map in a client-
server architecture

3

Motivation

Problem statement
Data needs to be transferred
over a network:

• Have to wait for a response,
which can affect responsiveness
of client

• Costs for every byte send over
the network

• Set-up costs for every request:
TCP/IP stack + HTTP headers

Opportunity
With vario-scale data, there is
a possibility to reuse data that
is already present on the client
and to retrieve only missing
data from the server.

4

Viewport Cached responseRequest Delta request

Motivation

5

Motivation

Overall goal
To achieve efficient
communication, without too
many redundant data
transfers, for vario-scale data
in a client-server architecture.

Need for research

6

A method is needed to use the
client cache and to support the
retrieval of partial vario-scale
data from the server.

However, current methods are
not yet optimal in terms of
scalability and redundancy.

Content overview

7

1. Motivation

2. Objectives

3. Methodology

4. Results

5. Future work

Objectives

1. Group data that are likely to be used together into packages on the
server; based on scale and geographic extent,

2. use client cache to reuse data,

3. and let the client retrieve packages using a spatial index.

8

9

R-tree

• Hierarchical structure build
on set of objects

10

R-tree

• Hierarchical structure build
on set of objects

• Objects represented by BBOX

11

R-tree

• Hierarchical structure build
on set of objects

• Objects represented by BBOX

• Lower-level nodes are
recursively grouped together
in higher-level nodes

12

R-tree

• Hierarchical structure build
on set of objects

• Objects represented by BBOX

• Lower-level nodes are
recursively grouped together
in higher-level nodes

13

R-tree

• Hierarchical structure build
on set of objects

• Objects represented by BBOX

• Lower-level nodes are
recursively grouped together
in higher-level nodes

14

R-tree

• Hierarchical structure build
on set of objects

• Objects represented by BBOX

• Lower-level nodes are
recursively grouped together
in higher-level nodes

• Nodes store the BBOX that
encloses the entire sub-tree

15

R-tree

• Hierarchical structure build
on set of objects

• Objects represented by BBOX

• Lower-level nodes are
recursively grouped together
in higher-level nodes

• Nodes store the BBOX that
encloses the entire sub-tree

• BBOXES are allowed to have
overlap

16

R-tree

• Search starts at root-node

• Leaf nodes usually contain
pointers to data

Leaf-node

Root-node

17

R-tree

• Search starts at root-node

• Leaf nodes usually contain
pointers to data

• Tree can be searched by
testing for intersection on
the BBOXES

18

R-tree

• Search starts at root-node

• Leaf nodes usually contain
pointers to data

• Tree can be searched by
testing for intersection on
the BBOXES

19

R-tree

• Search starts at root-node

• Leaf nodes usually contain
pointers to data

• Tree can be searched by
testing for intersection on
the BBOXES

20

R-tree

• Search starts at root-node

• Leaf nodes usually contain
pointers to data

• Tree can be searched by
testing for intersection on
the BBOXES

• If there is no intersection
with a higher-level node
there can be no intersection
with any of its children

21

• How to achieve good clustering, i.e.
efficiently group objects together?

• Top-down: Repeatedly insert new
objects and placing them in those
nodes that need the least enlargement

• Bottom-up: By imposing a linear
ordering on the objects using a Space
Filling Curve

• A SFC unravels higher dimensional space
into a single dimension while preserving
spatial proximity

Different space filling curves in 2D

R-tree

22

R-tree

Morton curve in 3D

Images adapted from http://asgerhoedt.dk/?p=276

• How to achieve good clustering, i.e.
efficiently group objects together?

• Top-down: Repeatedly insert new
objects and placing them in those
nodes that need the least enlargement

• Bottom-up: By imposing a linear
ordering on the objects using a Space
Filling Curve

• A SFC unravels higher dimensional space
into a single dimension while preserving
spatial proximity

Content overview

23

1. Motivation

2. Objectives

3. Methodology

4. Results

5. Future work

Methodology

24

Design requirements
Restrictions placed on the method to make it suitable for use in a
client-server architecture.

Methodology

25

Requirements for packages:
• Approximately equal size in

bytes

Methodology

26

Requirements for packages:
• Approximately equal size in

bytes

600 bytes

• Approximately equal size in
bytes

Methodology

27

Requirements for packages:

600 bytes

25000 bytes

• Approximately equal size in
bytes

Methodology

28

600 bytes

25000 bytes

Requirements for packages:

• Axis aligned BBOX

• Leaf nodes refer to packages

• Tree is balanced

• Full space utilization

Requirements for the index:

Methodology

Pre-processing
Creating the spatial index and the packages
from the source data.

Using the structures
Use of the index structure by the client and
processing the packages to make a map.

29

Methodology

O U T P U T

Vario-scale data

Packages

Phase 1:

Sort objects

I N P U T P R E - P R O C E S S I N G

Phase 2:

Create packages

Phase 3:

Create index
Index

Pre-processing

30

Methodology

O U T P U T

Vario-scale data

Packages

Phase 1:

Sort objects

I N P U T P R E - P R O C E S S I N G

Phase 2:

Create packages

Phase 3:

Create index
Index

Pre-processing

31

Get centroid

P H A S E 1 : I M P O S E L I N E A R O R D E R I N G O N O B J E C T S U S I N G A S P A C E F I L L I N G C U R V E

Calculate key Sort by key

Sorted objects

Methodology Pre-processing

32

Methodology Pre-processing

Get centroid

P H A S E 1 : I M P O S E L I N E A R O R D E R I N G O N O B J E C T S U S I N G A S P A C E F I L L I N G C U R V E

Calculate key Sort by key

Sorted objects
33

Methodology

O U T P U T

Vario-scale data

Packages

Phase 1:

Sort objects

I N P U T P R E - P R O C E S S I N G

Phase 2:

Create packages

Phase 3:

Create index
Index

Pre-processing

34

Methodology Pre-processing

Make groups of data
with upper threshold

In bytes

Create packages from
groups

Write to output as
JSON file

P H A S E 2 : C R E A T E P A C K A G E S

package1.json

Sorted objects

Packages

Requirement for packages:

Approximately equal size in bytes✔

35

Methodology

Example of clustering

36

Pre-processing

Methodology

Example of clustering

37

Pre-processing

Methodology

O U T P U T

Vario-scale data

Packages

Phase 1:

Sort objects

I N P U T P R E - P R O C E S S I N G

Phase 2:

Create packages

Phase 3:

Create index
Index

Pre-processing

38

Make nodes based on
branching factor

Write index to
output as JSON file

P H A S E 3 : C R E A T E I N D E X

Create
level in the index

from nodes Top level
of index

More than one node left in current level

Sort lower level
nodes by key

Calculate key

Get centroid

index.json

Sorted nodes

Methodology Pre-processing

Packages

39

Methodology

23 28 29 33 ... 78 91 98

Input: Sorted packages

Pre-processing
P H A S E 3 : C R E A T E I N D E X

40

Methodology

23 28 29 33 78 91 98

Step 1: Make groups based on branching factor

Pre-processing
P H A S E 3 : C R E A T E I N D E X

41

Methodology

87 75 21 27 31 44 72

Step 2: Create nodes and calculate key value for each node

Pre-processing
P H A S E 3 : C R E A T E I N D E X

42

Methodology

87 75 21 27 31 44 72

Step 3: Sort nodes based on key value

Pre-processing
P H A S E 3 : C R E A T E I N D E X

43

Methodology

21 27 31 44 72 75 87

Step 3: Sort nodes based on key value

Pre-processing
P H A S E 3 : C R E A T E I N D E X

44

Methodology

32 64

Step 4: Recursively create higher level nodes until root node is reached

Pre-processing
P H A S E 3 : C R E A T E I N D E X

45

Methodology

Full index

Pre-processing
P H A S E 3 : C R E A T E I N D E X

46

Methodology Pre-processing
P H A S E 3 : C R E A T E I N D E X

Requirements for the index:

✔

✔

✔

✔

Axis-aligned BBOX

Leaf nodes refer to packages

Tree is balanced

Near full space utilization

47

Methodology

Pre-processing

• Packages

48

• Leaf nodes

Methodology

Pre-processing

49

• Level one nodes

Methodology

Pre-processing

50

• Root node

Methodology

Pre-processing

51

• Conceptual diagram

Methodology

Client Webserver Database

Get index

Get packages

Use index structure to decide for packages

Process packages and make map

Using the structures

52

Methodology

Using the structures

53

• Sequence diagram

Methodology

Using the structures

54

• Sequence diagram

Methodology

Using the structures

55

• Sequence diagram

56

Content overview

57

1. Motivation

2. Objectives

3. Methodology

4. Results

5. Future work

Prototype

58

Current method (Option A)

59

60

61

New method (Option P)
62

63

64

65

66

Scenario 1 Scenario 2

Validation

Scenario 1

Exploring: Quickly
zoom and pan.

Scenario 2

Gradual zoom
and pan around
area of interest.

67

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Si
ze

 in
 b

yt
es

Query

Option A Option P

Scenario 1: Data transfers

(1.3 MB) (3 MB)

68

0

500

1000

1500

2000

2500

3000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Ti
m

e
ti

ll
la

st
 b

yt
e

(m
s)

Query

Option A Option P

Scenario 1: Response times

69

0

2

4

6

8

10

12

14

16

18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

To
ta

l p
ac

ka
ge

s
p

er
 q

u
er

y

Query

Retrieved from cache New request

Scenario 1: Total packages needed to make the map (Option P)

70

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Si
ze

 in
 b

yt
es

Query

Option A Option P

Scenario 2: Data transfers

(2.5 MB) (1.3 MB)

71

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

Ti
m

e
ti

ll
la

st
 b

yt
e

(m
s)

Query

Option A Option P

Scenario 2: Response times

72

0

2

4

6

8

10

12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

To
ta

l p
ac

ka
ge

s
p

er
 q

u
er

y

Query

Retrieved from cache New request

Scenario 2: Total packages needed to make the map (Option P)

73

Content overview

74

1. Motivation

2. Objectives

3. Methodology

4. Results

5. Future work

Future work

75

• Test with larger dataset

• Cache strategy:
If the dataset gets larger, how do we find out which data is most likely to be
reused and which data should be discarded if the cache limit exceeds?

• Possibility to retrieve index in parts:
To be able to make a generalized map without retrieving the whole index if the
dataset gets larger.

• Achieving compression:

Future work

76

Make use of the fact that data is transferred in groups. It should be possible to
define the coordinates of the edges relatively to a package reference.

• Improve clustering:
The performance of the method depends on the effectiveness of the algorithm
that clusters the data.

• Test in non-localhost setting:
Tests should be performed over a real network, with an average download
speed, to see if results would change.

• Retrieve the faces for the classic SSC:

Future work

77

Method was only tested with edges. Next step is to also incorporate the faces in
order to color the objects.

• Smooth SSC:
Test if new method can also be used for visualizing polyhedrons in the smooth
SSC with the GPU.

• Point clouds:
Method is generic and can possibly also be used for the transfer and reuse of
4D point clouds.

Thank you!

78

